Zeitschriftenartikel zum Thema „Data missingness“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Data missingness" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Shamihah, Muhammad Ghazali, Shaadan Norshahida, and Idrus Zainura. "Missing data exploration in air quality data set using R-package data visualisation tools." Bulletin of Electrical Engineering and Informatics 9, no. 2 (2020): 755–63. https://doi.org/10.11591/eei.v9i2.2088.
Der volle Inhalt der QuelleGhazali, Shamihah Muhammad, Norshahida Shaadan, and Zainura Idrus. "Missing data exploration in air quality data set using R-package data visualisation tools." Bulletin of Electrical Engineering and Informatics 9, no. 2 (2020): 755–63. http://dx.doi.org/10.11591/eei.v9i2.2088.
Der volle Inhalt der QuelleBeesley, Lauren J., Irina Bondarenko, Michael R. Elliot, Allison W. Kurian, Steven J. Katz, and Jeremy MG Taylor. "Multiple imputation with missing data indicators." Statistical Methods in Medical Research 30, no. 12 (2021): 2685–700. http://dx.doi.org/10.1177/09622802211047346.
Der volle Inhalt der QuelleBeesley, Lauren J., Irina Bondarenko, Michael R. Elliot, Allison W. Kurian, Steven J. Katz, and Jeremy MG Taylor. "Multiple imputation with missing data indicators." Statistical Methods in Medical Research 30, no. 12 (2021): 2685–700. http://dx.doi.org/10.1177/09622802211047346.
Der volle Inhalt der QuelleZHANG, WEN, YE YANG, and QING WANG. "A COMPARATIVE STUDY OF ABSENT FEATURES AND UNOBSERVED VALUES IN SOFTWARE EFFORT DATA." International Journal of Software Engineering and Knowledge Engineering 22, no. 02 (2012): 185–202. http://dx.doi.org/10.1142/s0218194012400025.
Der volle Inhalt der QuelleWu, Ting Ting, Louisa H. Smith, Lisette M. Vernooij, Emi Patel, and John W. Devlin. "Data Missingness Reporting and Use of Methods to Address It in Critical Care Cohort Studies." Critical Care Explorations 5, no. 11 (2023): e1005. http://dx.doi.org/10.1097/cce.0000000000001005.
Der volle Inhalt der QuelleDe Raadt, Alexandra, Matthijs J. Warrens, Roel J. Bosker, and Henk A. L. Kiers. "Kappa Coefficients for Missing Data." Educational and Psychological Measurement 79, no. 3 (2019): 558–76. http://dx.doi.org/10.1177/0013164418823249.
Der volle Inhalt der QuelleArioli, Angelica, Arianna Dagliati, Bethany Geary, et al. "OptiMissP: A dashboard to assess missingness in proteomic data-independent acquisition mass spectrometry." PLOS ONE 16, no. 4 (2021): e0249771. http://dx.doi.org/10.1371/journal.pone.0249771.
Der volle Inhalt der QuelleBabcock, Ben, Peter E. L. Marks, Yvonne H. M. van den Berg, and Antonius H. N. Cillessen. "Implications of systematic nominator missingness for peer nomination data." International Journal of Behavioral Development 42, no. 1 (2016): 148–54. http://dx.doi.org/10.1177/0165025416664431.
Der volle Inhalt der QuelleXie, Hui. "Analyzing longitudinal clinical trial data with nonignorable missingness and unknown missingness reasons." Computational Statistics & Data Analysis 56, no. 5 (2012): 1287–300. http://dx.doi.org/10.1016/j.csda.2010.11.021.
Der volle Inhalt der QuelleSpineli, Loukia M., Chrysostomos Kalyvas, and Katerina Papadimitropoulou. "Continuous(ly) missing outcome data in network meta-analysis: A one-stage pattern-mixture model approach." Statistical Methods in Medical Research 30, no. 4 (2021): 958–75. http://dx.doi.org/10.1177/0962280220983544.
Der volle Inhalt der QuelleQiao, Jie, Zhengming Chen, Jianhua Yu, Ruichu Cai, and Zhifeng Hao. "Identification of Causal Structure in the Presence of Missing Data with Additive Noise Model." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 18 (2024): 20516–23. http://dx.doi.org/10.1609/aaai.v38i18.30036.
Der volle Inhalt der QuelleMitra, Robin, Sarah F. McGough, Tapabrata Chakraborti, et al. "Learning from data with structured missingness." Nature Machine Intelligence 5, no. 1 (2023): 13–23. http://dx.doi.org/10.1038/s42256-022-00596-z.
Der volle Inhalt der QuelleMcGurk, Kathryn A., Arianna Dagliati, Davide Chiasserini, et al. "The use of missing values in proteomic data-independent acquisition mass spectrometry to enable disease activity discrimination." Bioinformatics 36, no. 7 (2019): 2217–23. http://dx.doi.org/10.1093/bioinformatics/btz898.
Der volle Inhalt der QuelleElleman, Lorien G., Sarah K. McDougald, David M. Condon, and William Revelle. "That Takes the BISCUIT." European Journal of Psychological Assessment 36, no. 6 (2020): 948–58. http://dx.doi.org/10.1027/1015-5759/a000590.
Der volle Inhalt der QuelleRhemtulla, Mijke, Fan Jia, Wei Wu, and Todd D. Little. "Planned missing designs to optimize the efficiency of latent growth parameter estimates." International Journal of Behavioral Development 38, no. 5 (2014): 423–34. http://dx.doi.org/10.1177/0165025413514324.
Der volle Inhalt der QuelleFernstad, Sara Johansson. "To identify what is not there: A definition of missingness patterns and evaluation of missing value visualization." Information Visualization 18, no. 2 (2018): 230–50. http://dx.doi.org/10.1177/1473871618785387.
Der volle Inhalt der QuelleGoel, Naman, Alfonso Amayuelas, Amit Deshpande, and Amit Sharma. "The Importance of Modeling Data Missingness in Algorithmic Fairness: A Causal Perspective." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 7564–73. http://dx.doi.org/10.1609/aaai.v35i9.16926.
Der volle Inhalt der QuelleForna, Alpha, Ilaria Dorigatti, Pierre Nouvellet, and Christl A. Donnelly. "Comparison of machine learning methods for estimating case fatality ratios: An Ebola outbreak simulation study." PLOS ONE 16, no. 9 (2021): e0257005. http://dx.doi.org/10.1371/journal.pone.0257005.
Der volle Inhalt der QuelleRibeiro, Silvana Mara, and Cristiano Leite Castro. "Missing Data in Time Series: A Review of Imputation Methods and Case Study." Learning and Nonlinear Models 20, no. 1 (2022): 31–46. http://dx.doi.org/10.21528/lnlm-vol20-no1-art3.
Der volle Inhalt der QuelleSt-Louis, Etienne, Daniel Roizblatt, Dan L. Deckelbaum, Robert Baird, César V. Millán, and Alicia Ebensperger. "Identifying Pediatric Trauma Data Gaps at a Large Urban Trauma Referral Center in Santiago, Chile." Panamerican Journal of Trauma, Critical Care & Emergency Surgery 6, no. 3 (2017): 169–76. http://dx.doi.org/10.5005/jp-journals-10030-1188.
Der volle Inhalt der QuelleYildiz, Mustafa, Vicki Winstead, and Carolyn Pickering. "THE ROLE OF MISSINGNESS IN DAILY DIARY DATA." Innovation in Aging 7, Supplement_1 (2023): 604. http://dx.doi.org/10.1093/geroni/igad104.1974.
Der volle Inhalt der QuelleSadinle, Mauricio, and Jerome P. Reiter. "Sequentially additive nonignorable missing data modelling using auxiliary marginal information." Biometrika 106, no. 4 (2019): 889–911. http://dx.doi.org/10.1093/biomet/asz054.
Der volle Inhalt der QuelleKim, Jungkyu, Kibok Lee, and Taeyoung Park. "To Predict or Not to Predict? Proportionally Masked Autoencoders for Tabular Data Imputation." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 17 (2025): 17886–94. https://doi.org/10.1609/aaai.v39i17.33967.
Der volle Inhalt der QuelleLu, Zhenqiu, and Zhiyong Zhang. "Bayesian Approach to Non-ignorable Missingness in Latent Growth Models." Journal of Behavioral Data Science 1, no. 2 (2021): 1–30. http://dx.doi.org/10.35566/jbds/v1n2/p1.
Der volle Inhalt der QuellePlancade, Sandra, Magali Berland, Mélisande Blein-Nicolas, Olivier Langella, Ariane Bassignani, and Catherine Juste. "A combined test for feature selection on sparse metaproteomics data—an alternative to missing value imputation." PeerJ 10 (June 24, 2022): e13525. http://dx.doi.org/10.7717/peerj.13525.
Der volle Inhalt der QuelleMainzer, Rheanna, Margarita Moreno-Betancur, Cattram Nguyen, Julie Simpson, John Carlin, and Katherine Lee. "Handling of missing data with multiple imputation in observational studies that address causal questions: protocol for a scoping review." BMJ Open 13, no. 2 (2023): e065576. http://dx.doi.org/10.1136/bmjopen-2022-065576.
Der volle Inhalt der QuelleZamanian, Alireza, Henrik von Kleist, Octavia-Andreea Ciora, Marta Piperno, Gino Lancho, and Narges Ahmidi. "Analysis of Missingness Scenarios for Observational Health Data." Journal of Personalized Medicine 14, no. 5 (2024): 514. http://dx.doi.org/10.3390/jpm14050514.
Der volle Inhalt der QuelleDoggett, Amanda, Ashok Chaurasia, Jean-Philippe Chaput, and Scott T. Leatherdale. "Using classification and regression trees to model missingness in youth BMI, height and body mass data." Health Promotion and Chronic Disease Prevention in Canada 43, no. 5 (2023): 231–42. http://dx.doi.org/10.24095/hpcdp.43.5.03.
Der volle Inhalt der QuelleImai, Takumi. "Methodology of Semiparametric Estimation for Data with Missingness." Japanese Journal of Applied Statistics 46, no. 2 (2017): 87–106. http://dx.doi.org/10.5023/jappstat.46.87.
Der volle Inhalt der QuelleMolenberghs, Geert, Els J. T. Goetghebeur, Stuart R. Lipsitz, and Michael G. Kenward. "Nonrandom Missingness in Categorical Data: Strengths and Limitations." American Statistician 53, no. 2 (1999): 110. http://dx.doi.org/10.2307/2685728.
Der volle Inhalt der QuelleCho Paik, Myunghee. "Nonignorable Missingness in Matched Case-Control Data Analyses." Biometrics 60, no. 2 (2004): 306–14. http://dx.doi.org/10.1111/j.0006-341x.2004.00174.x.
Der volle Inhalt der QuelleMolenberghs, Geert, Els J. T. Goetghebeur, Stuart R. Lipsitz, and Michael G. Kenward. "Nonrandom Missingness in Categorical Data: Strengths and Limitations." American Statistician 53, no. 2 (1999): 110–18. http://dx.doi.org/10.1080/00031305.1999.10474442.
Der volle Inhalt der QuelleDerks, Eske M., Conor V. Dolan, and Dorret I. Boomsma. "Statistical Power to Detect Genetic and Environmental Influences in the Presence of Data Missing at Random." Twin Research and Human Genetics 10, no. 1 (2007): 159–67. http://dx.doi.org/10.1375/twin.10.1.159.
Der volle Inhalt der QuelleYu, Yue, Emily J. Smith, and Carter T. Butts. "Retrospective Network Imputation from Life History Data: The Impact of Designs." Sociological Methodology 50, no. 1 (2020): 131–67. http://dx.doi.org/10.1177/0081175020905624.
Der volle Inhalt der Quellevan, Oudenhoven Floor M., Sophie H. N. Swinkels, Hilkka Soininen, et al. "A competing risk joint model for dealing with different types of missing data in an intervention trial in prodromal Alzheimer's disease." Alzheimer's Research & Therapy 13, no. 1 (2021): 63. https://doi.org/10.1186/s13195-021-00801-y.
Der volle Inhalt der QuelleChaimani, Anna, Dimitris Mavridis, Georgia Salanti, Julian P. T. Higgins, and Ian R. White. "Allowing for Informative Missingness in Aggregate Data Meta-Analysis with Continuous or Binary Outcomes: Extensions to Metamiss." Stata Journal: Promoting communications on statistics and Stata 18, no. 3 (2018): 716–40. http://dx.doi.org/10.1177/1536867x1801800310.
Der volle Inhalt der QuelleSanju, Sanju, and Vinay Kumar. "Analysis of Incomplete Data Under Different Missingness Mechanism using Imputation Methods for Wheat Genotypes." Current Agriculture Research Journal 11, no. 3 (2024): 1050–56. http://dx.doi.org/10.12944/carj.11.3.33.
Der volle Inhalt der QuelleZhou, Sherry, and Anne Corinne Huggins-Manley. "The Performance of the Semigeneralized Partial Credit Model for Handling Item-Level Missingness." Educational and Psychological Measurement 80, no. 6 (2020): 1196–215. http://dx.doi.org/10.1177/0013164420918392.
Der volle Inhalt der QuelleJabbar, Zain, and Peter Washington. "The Effect of Data Missingness on Machine Learning Predictions of Uncontrolled Diabetes Using All of Us Data." BioMedInformatics 4, no. 1 (2024): 780–95. http://dx.doi.org/10.3390/biomedinformatics4010043.
Der volle Inhalt der QuelleAlade, Oyekale Abel, Ali Selamat, and Roselina Sallehuddin. "The Effects of Missing Data Characteristics on the Choice of Imputation Techniques." Vietnam Journal of Computer Science 07, no. 02 (2020): 161–77. http://dx.doi.org/10.1142/s2196888820500098.
Der volle Inhalt der QuelleFang, Zhou, Tianzhou Ma, Gong Tang, et al. "Bayesian integrative model for multi-omics data with missingness." Bioinformatics 34, no. 22 (2018): 3801–8. http://dx.doi.org/10.1093/bioinformatics/bty775.
Der volle Inhalt der QuelleKhoshgoftaar, Taghi M., and Jason Van Hulse. "Imputation techniques for multivariate missingness in software measurement data." Software Quality Journal 16, no. 4 (2008): 563–600. http://dx.doi.org/10.1007/s11219-008-9054-7.
Der volle Inhalt der QuelleMcNeish, Daniel. "Missing data methods for arbitrary missingness with small samples." Journal of Applied Statistics 44, no. 1 (2016): 24–39. http://dx.doi.org/10.1080/02664763.2016.1158246.
Der volle Inhalt der QuellePark, Soomin, Mari Palta, Jun Shao, and Lei Shen. "Bias adjustment in analysing longitudinal data with informative missingness." Statistics in Medicine 21, no. 2 (2001): 277–91. http://dx.doi.org/10.1002/sim.992.
Der volle Inhalt der QuelleFranks, Alexander M., Edoardo M. Airoldi, and Donald B. Rubin. "Nonstandard conditionally specified models for nonignorable missing data." Proceedings of the National Academy of Sciences 117, no. 32 (2020): 19045–53. http://dx.doi.org/10.1073/pnas.1815563117.
Der volle Inhalt der QuelleZeng, Zhixuan, Yang Liu, Shuo Yao, et al. "Neural networks based on attention architecture are robust to data missingness for early predicting hospital mortality in intensive care unit patients." DIGITAL HEALTH 9 (January 2023): 205520762311714. http://dx.doi.org/10.1177/20552076231171482.
Der volle Inhalt der QuelleRuiz, Rizzo Adriana Lucía, Meléndez Mario Eduardo Archila, and Veloza José John Fredy González. "Predicting the probability of finding missing older adults based on machine learning." Journal of Computational Social Science 5, no. 2 (2022): 1303–21. https://doi.org/10.1007/s42001-022-00171-x.
Der volle Inhalt der QuelleBlozis, Shelley A. "Bayesian pattern-mixture models for dropout and intermittently missing data in longitudinal data analysis." Behavior Research Methods, May 23, 2023. http://dx.doi.org/10.3758/s13428-023-02128-y.
Der volle Inhalt der QuelleZhang, Jiwei, Jing Lu, and Zhaoyuan Zhang. "Modeling Missing Response Data in Item Response Theory: Addressing Missing Not at Random Mechanism with Monotone Missing Characteristics." Journal of Educational Measurement, February 24, 2025. https://doi.org/10.1111/jedm.12428.
Der volle Inhalt der Quelle