Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Deep generative modeling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Deep generative modeling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Deep generative modeling"
Blaschke, Thomas, and Jürgen Bajorath. "Compound dataset and custom code for deep generative multi-target compound design." Future Science OA 7, no. 6 (2021): FSO715. http://dx.doi.org/10.2144/fsoa-2021-0033.
Der volle Inhalt der QuelleJoshi, Ameya, Minsu Cho, Viraj Shah, et al. "InvNet: Encoding Geometric and Statistical Invariances in Deep Generative Models." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 4377–84. http://dx.doi.org/10.1609/aaai.v34i04.5863.
Der volle Inhalt der QuelleLai, Peter, and Feruza Amirkulova. "Acoustic metamaterial design using Conditional Wasserstein Generative Adversarial Networks." Journal of the Acoustical Society of America 151, no. 4 (2022): A253. http://dx.doi.org/10.1121/10.0011234.
Der volle Inhalt der QuelleKomanduri, Aneesh. "Toward Causal Generative Modeling: From Representation to Generation." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 28 (2025): 29275–76. https://doi.org/10.1609/aaai.v39i28.35215.
Der volle Inhalt der QuelleStrokach, Alexey, and Philip M. Kim. "Deep generative modeling for protein design." Current Opinion in Structural Biology 72 (February 2022): 226–36. http://dx.doi.org/10.1016/j.sbi.2021.11.008.
Der volle Inhalt der QuelleTomczak, Jakub M. "Deep Generative Modeling: From Probabilistic Framework to Generative AI." Entropy 27, no. 3 (2025): 238. https://doi.org/10.3390/e27030238.
Der volle Inhalt der QuelleLopez, Romain, Jeffrey Regier, Michael B. Cole, Michael I. Jordan, and Nir Yosef. "Deep generative modeling for single-cell transcriptomics." Nature Methods 15, no. 12 (2018): 1053–58. http://dx.doi.org/10.1038/s41592-018-0229-2.
Der volle Inhalt der QuelleLee, Ung-Gi, Sang-Hee Kang, Jong-Chan Lee, Seo-Yeon Choi, Ukmyung Choi, and Cheol-Il Lim. "Development of Deep Learning-based Art Learning Support Tool: Using Generative Modeling." Korean Association for Educational Information and Media 26, no. 1 (2020): 207–36. http://dx.doi.org/10.15833/kafeiam.26.1.207.
Der volle Inhalt der QuelleBehnia, Farnaz, Dominik Karbowski, and Vadim Sokolov. "Deep generative models for vehicle speed trajectories." Applied Stochastic Models in Business and Industry 39, no. 5 (2023): 701–19. http://dx.doi.org/10.1002/asmb.2816.
Der volle Inhalt der QuelleJanson, Giacomo, and Michael Feig. "Transferable deep generative modeling of intrinsically disordered protein conformations." PLOS Computational Biology 20, no. 5 (2024): e1012144. http://dx.doi.org/10.1371/journal.pcbi.1012144.
Der volle Inhalt der QuelleDissertationen zum Thema "Deep generative modeling"
Skalic, Miha 1990. "Deep learning for drug design : modeling molecular shapes." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/667503.
Der volle Inhalt der QuelleChen, Tian Qi. "Deep kernel mean embeddings for generative modeling and feedforward style transfer." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62668.
Der volle Inhalt der QuelleBrodie, Michael B. "Methods for Generative Adversarial Output Enhancement." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8763.
Der volle Inhalt der QuelleTestolin, Alberto. "Modeling cognition with generative neural networks: The case of orthographic processing." Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424619.
Der volle Inhalt der QuelleYan, Guowei. "Interactive Modeling of Elastic Materials and Splashing Liquids." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1593098802306904.
Der volle Inhalt der QuelleSadok, Samir. "Audiovisual speech representation learning applied to emotion recognition." Electronic Thesis or Diss., CentraleSupélec, 2024. http://www.theses.fr/2024CSUP0003.
Der volle Inhalt der QuelleLuc, Pauline. "Apprentissage autosupervisé de modèles prédictifs de segmentation à partir de vidéos." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM024/document.
Der volle Inhalt der QuelleIonascu, Beatrice. "Modelling user interaction at scale with deep generative methods." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239333.
Der volle Inhalt der QuelleMcClintick, Kyle W. "Training Data Generation Framework For Machine-Learning Based Classifiers." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1276.
Der volle Inhalt der QuelleFang, Zhufeng. "USING GEOSTATISTICS, PEDOTRANSFER FUNCTIONS TO GENERATE 3D SOIL AND HYDRAULIC PROPERTY DISTRIBUTIONS FOR DEEP VADOSE ZONE FLOW SIMULATIONS." Thesis, The University of Arizona, 2009. http://hdl.handle.net/10150/193439.
Der volle Inhalt der QuelleBücher zum Thema "Deep generative modeling"
Tomczak, Jakub M. Deep Generative Modeling. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93158-2.
Der volle Inhalt der QuelleTomczak, Jakub M. Deep Generative Modeling. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-64087-2.
Der volle Inhalt der QuelleGanem, Gabriel Loaiza. Advances in Deep Generative Modeling With Applications to Image Generation and Neuroscience. [publisher not identified], 2019.
Den vollen Inhalt der Quelle findenYahi, Alexandre. Simulating drug responses in laboratory test time series with deep generative modeling. [publisher not identified], 2019.
Den vollen Inhalt der Quelle findenTomczak, Jakub. Deep Generative Modeling. Springer International Publishing AG, 2022.
Den vollen Inhalt der Quelle findenDeep Generative Modeling. Springer International Publishing AG, 2024.
Den vollen Inhalt der Quelle findenDeep Generative Modeling. Springer International Publishing AG, 2023.
Den vollen Inhalt der Quelle findenHartnett, Gavin, Raffaele Vardavas, Lawrence Baker, et al. Deep Generative Modeling in Network Science with Applications to Public Policy Research. RAND Corporation, 2020. http://dx.doi.org/10.7249/wra843-1.
Der volle Inhalt der QuelleBongard, Josh. Modeling self and others. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0011.
Der volle Inhalt der QuelleBuchteile zum Thema "Deep generative modeling"
Tomczak, Jakub M. "Hybrid Modeling." In Deep Generative Modeling. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_5.
Der volle Inhalt der QuelleTomczak, Jakub M. "Hybrid Modeling." In Deep Generative Modeling. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-64087-2_6.
Der volle Inhalt der QuelleTomczak, Jakub M. "Generative Adversarial Networks." In Deep Generative Modeling. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_7.
Der volle Inhalt der QuelleTomczak, Jakub M. "Generative Adversarial Networks." In Deep Generative Modeling. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-64087-2_8.
Der volle Inhalt der QuelleTomczak, Jakub M. "Deep Generative Modeling for Neural Compression." In Deep Generative Modeling. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_8.
Der volle Inhalt der QuelleTomczak, Jakub M. "Autoregressive Models." In Deep Generative Modeling. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_2.
Der volle Inhalt der QuelleTomczak, Jakub M. "Energy-Based Models." In Deep Generative Modeling. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_6.
Der volle Inhalt der QuelleTomczak, Jakub M. "Flow-Based Models." In Deep Generative Modeling. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_3.
Der volle Inhalt der QuelleTomczak, Jakub M. "Why Deep Generative Modeling?" In Deep Generative Modeling. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_1.
Der volle Inhalt der QuelleTomczak, Jakub M. "Latent Variable Models." In Deep Generative Modeling. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Deep generative modeling"
Chelaru, Bogdan, and Catalin Onutu. "BIM APLICATIONS IN THE DESIGN OF DEEP FOUNDATIONS FOR WIND TURBINES." In SGEM International Multidisciplinary Scientific GeoConference 24. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024/6.1/s27.50.
Der volle Inhalt der QuelleRizia, Mst Mousumi, Chenchen Xu, Jennie Roberts, et al. "Understanding the Development of Disease in Radiology Scans of the Brain through Deep Generative Modelling." In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822442.
Der volle Inhalt der QuelleCaccia, Lucas, Herke van Hoof, Aaron Courville, and Joelle Pineau. "Deep Generative Modeling of LiDAR Data." In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019. http://dx.doi.org/10.1109/iros40897.2019.8968535.
Der volle Inhalt der QuelleDavoody, Amirhossein, Ananda S. Roy, and Sivakumar P. Mudanai. "Deep Generative Model for Device Variation Modeling." In 2023 International Electron Devices Meeting (IEDM). IEEE, 2023. http://dx.doi.org/10.1109/iedm45741.2023.10413830.
Der volle Inhalt der QuelleBianco, Michael J., Sharon Gannot, and Peter Gerstoft. "Semi-Supervised Source Localization with Deep Generative Modeling." In 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2020. http://dx.doi.org/10.1109/mlsp49062.2020.9231825.
Der volle Inhalt der QuelleLi, Zhaoyu, Son P. Nguyen, Dong Xu, and Yi Shang. "Protein Loop Modeling Using Deep Generative Adversarial Network." In 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2017. http://dx.doi.org/10.1109/ictai.2017.00166.
Der volle Inhalt der QuelleFatir Ansari, Abdul, Jonathan Scarlett, and Harold Soh. "A Characteristic Function Approach to Deep Implicit Generative Modeling." In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020. http://dx.doi.org/10.1109/cvpr42600.2020.00750.
Der volle Inhalt der QuelleLiu, Yiding, Kaiqi Zhao, Gao Cong, and Zhifeng Bao. "Online Anomalous Trajectory Detection with Deep Generative Sequence Modeling." In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 2020. http://dx.doi.org/10.1109/icde48307.2020.00087.
Der volle Inhalt der QuelleGhimire, Sandesh, and Linwei Wang. "Deep Generative Modeling and Analysis of Cardiac Transmembrane Potential." In 2018 Computing in Cardiology Conference. Computing in Cardiology, 2018. http://dx.doi.org/10.22489/cinc.2018.075.
Der volle Inhalt der QuelleDai, Mengyu, and Haibin Hang. "Manifold Matching via Deep Metric Learning for Generative Modeling." In 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021. http://dx.doi.org/10.1109/iccv48922.2021.00652.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Deep generative modeling"
Sadoune, Igor, Marcelin Joanis, and Andrea Lodi. Implementing a Hierarchical Deep Learning Approach for Simulating multilevel Auction Data. CIRANO, 2023. http://dx.doi.org/10.54932/lqog8430.
Der volle Inhalt der QuelleHuang, Lei, Meng Song, Hui Shen, et al. Deep learning methods for omics data imputation. Engineer Research and Development Center (U.S.), 2024. http://dx.doi.org/10.21079/11681/48221.
Der volle Inhalt der QuelleSkyllingstad, Eric D. Next Generation Modeling for Deep Water Wave Breaking and Langmuir Circulation. Defense Technical Information Center, 2009. http://dx.doi.org/10.21236/ada498290.
Der volle Inhalt der QuelleSkyllingstad, Eric D. Next Generation Modeling for Deep Water Wave Breaking and Langmuir Circulation. Defense Technical Information Center, 2008. http://dx.doi.org/10.21236/ada534062.
Der volle Inhalt der QuelleBeaulieu, Stace E., Karen Stocks, and Leslie M. Smith. FAIR Data Training for Deep Ocean Early Career Researchers: Syllabus and slide presentations. Woods Hole Oceanographic Institution, 2024. http://dx.doi.org/10.1575/1912/67631.
Der volle Inhalt der QuelleBuesseler, Buessele, Daniele Bianchi, Fei Chai, et al. Paths forward for exploring ocean iron fertilization. Woods Hole Oceanographic Institution, 2023. http://dx.doi.org/10.1575/1912/67120.
Der volle Inhalt der Quelle