Dissertationen zum Thema „Dendritic arborization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-15 Dissertationen für die Forschung zum Thema "Dendritic arborization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Garrett, Andrew Weiner Joshua A. „Control of synaptogenesis and dendritic arborization by the [gamma]-Protocadherin family of adhesion molecules“. [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/362.
Der volle Inhalt der QuelleGarrett, Andrew. „Control of synaptogenesis and dendritic arborization by the γ-Protocadherin family of adhesion molecules“. Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/362.
Der volle Inhalt der QuelleKarakatsani, Andromachi [Verfasser], und Hans [Akademischer Betreuer] Straka. „LRP4 regulates dendritic arborization and synapse formation in the central nervous system neurons / Andromachi Karakatsani ; Betreuer: Hans Straka“. München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2016. http://d-nb.info/1120301963/34.
Der volle Inhalt der QuelleHandara, Gerry [Verfasser], und Stephan [Akademischer Betreuer] Kröger. „The role of transmembrane-agrin and its receptor complex during dendritic arborization and synaptogenesis / Gerry Handara ; Betreuer: Stephan Kröger“. München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1199265411/34.
Der volle Inhalt der Quelle高山, 雄太. „筋萎縮性側索硬化症2型原因遺伝子のショウジョウバエホモログの生体内機能“. 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/189376.
Der volle Inhalt der QuelleChassefeyre, Romain. „Rôle de CHMP2B et du complexe ESCRT-III dans le remodelage dans membranes cellulaires : cas des épines dendritiques“. Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENV049/document.
Der volle Inhalt der QuelleCHMP2B is a subunit of ESCRT-III, a highly conserved cytosolic protein machinery, responsible for membrane remodeling in diverse cellular mechanisms. Mutations in CHMP2B are responsible for a familial form of frontotemporal dementia. A previous study highlighted that FTD-related mutants of CHMP2B impair the morphological maturation of dendritic spines, a process that may underlie neurodegeneration in this disease. The goal of this research work id directed towards understanding the role of CHMP2B and ESCRT-III in dendritic spines structure and function. In cell lines, we demonstrated that CHMP2B associates preferentially with the plasma membrane, polymerizes in helical filaments and forms long and thin membrane protrusions. This result indicates that CHMP2B is directly involved in plasma membrane remodeling. In neurons, CHMP2B concentrates in specific sub-membrane microdomains close to the PSD. Biochemical analysis revealed that CHMP2B and CHMP4B associate with other subunits to form a remarkably stable postsynaptic ESCRT-III complex. Mass-spectrometry indicated that this complex also interacts with postsynaptic scaffolds and proteins involved in actin cytoskeleton remodelling. RNAi depletion of CHMP2B, in cultured neurons, alters stability of dendrite branching and morphology of dendritic spines, and impairs spine head growth, normally associated with LTP. Rescue experiments, with point mutants, indicated that CHMP2B activity in dendrite branching is dependent on its capacity to both bind phospholipids and oligomerization with ESCRT-III. We propose a novel functionality for an ESCRT-III complex containing CHMP2B, in maturation-dependent and plasticity-dependent processes of dendritic spine morphogenesis
Ou, Yimiao. „Molecular mechanisms controlling the arborization of dendrites in «Drosophila»“. Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96940.
Der volle Inhalt der QuelleL'élaboration et le fonctionnement harmonieux des circuits nerveux dépendent de la croissance des dendrites et de leur guidage et ciblage vers les territoires appropriés au cours du développement. La morphologie des dendrites sert de signe distinctif pour chaque neurone, et ainsi, joue un rôle crucial dans la détermination des différents influx (synaptiques ou sensoriels) que reçoit un neurone. Malgré de récentes avancées dans la compréhension des mécanismes moléculaires et cellulaires qui contrôlent l'architecture dendritique, notre connaissance du développement des dendrites reste encore incomplète. Mes travaux de recherche se sont attachés à découvrir de nouveaux gènes et mécanismes impliqués dans la morphogenèse dendritique. Dans ce but, j'ai choisi au cours de ma thèse deux méthodes d'étude: une approche par crible génétique et une approche par gènes candidats, que j'ai appliquées aux neurones appelés dendritic arborization (da) de la drosophile, mon modèle d'étude. Mes recherches m'ont permis de me concentrer sur trois molécules: 1) le récepteur nucléaire de l'hormone stéroïde ecdysone (EcR), 2) le facteur de transcription Longitudinals Lacking (Lola) et enfin, 3) la molécule de surface Turtle (Tutl). J'ai pu montrer que chacun de ces facteurs est implique dans des aspects distincts du processus de morphogenèse dendritique incluant le branchement, la distribution et l'auto-répulsion dendritiques. L'identification de ces molécules, la description de leurs patrons d'expression et la caractérisation des phénotypes associés à leurs pertes ou gains de fonctions, m'ont permis d'apporter de nouvelles connaissances des réseaux de régulation contrôlant la morphogenèse dendritique.
Mah, Kar Men. „Unique roles for the C3 gamma-protocadherin isoform in WNT signaling and dendrite arborization“. Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5964.
Der volle Inhalt der QuelleKeeler, Austin Byler. „Branching out by sticking together: elucidating mechanisms of gamma-protocadherin control of dendrite arborization“. Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/2230.
Der volle Inhalt der QuelleDimitrova, Svetla. „Physiological Roles of Robo Receptor during dendrite development of the multidendritic arborization neurons of the Drosophila peripheral nervous system“. Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-78347.
Der volle Inhalt der QuelleKhatri, Natasha. „The autism protein UBE3A/E6AP regulates remodeling of neuronal dendritic arborization“. Thesis, 2017. https://hdl.handle.net/2144/23414.
Der volle Inhalt der Quelle2018-07-09T00:00:00Z
Huang, Wayne. „PAKs 1 & 3 Control Postnatal Brain Development and Cognitive Behaviour through Regulation of Axonal and Dendritic Arborizations“. Thesis, 2012. http://hdl.handle.net/1807/33708.
Der volle Inhalt der QuelleCastanho, Isabel Maria Sousa. „The impact of phospholipase D genetic ablation in the mouse hippocampus“. Master's thesis, 2015. http://hdl.handle.net/1822/46972.
Der volle Inhalt der QuelleOver the past years increasing amount of attention has been given to signaling lipids as well as to its modulating enzymes, such as phospholipases. Specifically, phospholipase D (PLD), that converts phosphatidylcholine to phosphatidic acid, has been shown to exhibit a role in neurological development and physiology. Several studies have been associating PLD1 and PLD2, the two mammalian PLD isozymes, to neurological events, including neurotransmitter release, dendritic branching, cognition, and brain development. Also, the hippocampus has been suggested as one of the brain regions showing the highest PLD activity, and neurodegenerative conditions (such as Alzheimer’s disease) associated pathways have been shown to be modulated by PLD signaling. Thus, the aim of this project is to better understand the potential role of PLD in hippocampal function in adult mice upon Pld1 or Pld2 genetic ablation. To achieve this, we performed a hippocampal related behavioral characterization of these animals and a structural analysis regarding dendritic morphology. Our behavioral data, specifically considering motor and exploratory activity, anxiety and memory, showed that behavior of PLD2 knockout mice is not altered when compared to their wild type littermates. Although most of this was also observed in the animals lacking PLD1, the results indicate an object recognition-dependent shortterm memory deficit. Regarding hippocampal dendritic arborization, the ablation of either PLD1 or PLD2 led to alterations in dendritic morphology, although with a different impact of each isozyme in the dorsal-ventral axis and in the trisynaptic circuitry of the hippocampus. In summary, our results suggest that the ablation of either PLD1 or PLD2 may have a different effect in the dorsal and ventral hippocampus.
Nos últimos anos tem-se verificado um aumento na atenção dada aos lípidos de sinalização e suas respetivas enzimas moduladoras, tais como as fosfolipases. Especificamente, a fosfolipase D (PLD), que converte fosfatidilcolina em ácido fosfatídico, tem sido demonstrada como desempenhando um papel fundamental no desenvolvimento e fisiologia neurológicos. Diversos estudos têm vindo a associar a PLD1 e a PLD2, as duas isoenzimas identificadas nos mamíferos, a eventos neurológicos, incluindo libertação de neurotransmissores, ramificação dendrítica, cognição e desenvolvimento cerebral. Além disso, o hipocampo tem sido sugerido como uma das regiões do cérebro com maior atividade da PLD, e vias metabólicas associadas a doenças neurodegenerativas (como a doença de Alzheimer) têm sido demonstradas como sendo moduladas por vias de sinalização que envolvem a PLD. Deste modo, o objetivo deste projeto é compreender melhor o potencial papel da PLD na função do hipocampo em ratinhos adultos com ablação genética de Pld1 ou Pld2. Para o alcançar, executámos uma caracterização comportamental destes animais, diretamente relacionada com o hipocampo, assim como uma análise estrutural da sua morfologia dendrítica. Os nossos dados comportamentais, especificamente no que diz respeito a atividade motora e comportamento exploratório, ansiedade e memória, demonstraram que o comportamento de ratinhos knockout para a PLD2 não se encontra alterado quando comparado com os ratinhos wild type. Apesar de que a maior parte destes resultados foi também observada nos ratinhos com ablação genética de PLD1, foi detetado um défice cognitivo, especificamente na memória a curto-prazo dependente do reconhecimento de objetos. Na análise da arborização dendrítica, a remoção de PLD1 ou PLD2 levou a alterações na sua morfologia, com um impacto diferencial de cada uma das isoenzimas no eixo dorsal-ventral e ao longo do circuito trisináptico hipocampal. Em suma, os nossos resultados sugerem que a ablação de PLD1 e PLD2 poderá ter um efeito distinto no hipocampo dorsal e ventral.
Li, Hsun, und 李珣. „Study of the Golgi Outpost-localized Proteins Fringe and Lrrk in Dendrite Arborization“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/a825d9.
Der volle Inhalt der QuelleDimitrova, Svetla [Verfasser]. „Physiological roles of Robo receptor during dendrite development of the multidendritic arborization neurons of the Drosophila peripheral nervous system / vorgelegt von Svetla Dimitrova“. 2007. http://d-nb.info/987872877/34.
Der volle Inhalt der Quelle