Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Density functional theory (DFT)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Density functional theory (DFT)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Density functional theory (DFT)"
Ramos, Pablo, und Michele Pavanello. „Constrained subsystem density functional theory“. Physical Chemistry Chemical Physics 18, Nr. 31 (2016): 21172–78. http://dx.doi.org/10.1039/c6cp00528d.
Der volle Inhalt der QuelleYousefi, Ahmad, und Ariel Caticha. „Entropic Density Functional Theory“. Entropy 26, Nr. 1 (21.12.2023): 10. http://dx.doi.org/10.3390/e26010010.
Der volle Inhalt der QuelleJiang, Jian, Valeriy V. Ginzburg und Zhen-Gang Wang. „Density functional theory for charged fluids“. Soft Matter 14, Nr. 28 (2018): 5878–87. http://dx.doi.org/10.1039/c8sm00595h.
Der volle Inhalt der QuelleChen, Jien-Lian, Yi-Lun Sun, Kuo-Jui Wu und Wei-Ping Hu. „Multicoefficient Density Functional Theory (MC−DFT)“. Journal of Physical Chemistry A 112, Nr. 5 (Februar 2008): 1064–70. http://dx.doi.org/10.1021/jp0758871.
Der volle Inhalt der QuelleGeerlings, Paul. „From Density Functional Theory to Conceptual Density Functional Theory and Biosystems“. Pharmaceuticals 15, Nr. 9 (06.09.2022): 1112. http://dx.doi.org/10.3390/ph15091112.
Der volle Inhalt der Quellevan Mourik, Tanja, Michael Bühl und Marie-Pierre Gaigeot. „Density functional theory across chemistry, physics and biology“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, Nr. 2011 (13.03.2014): 20120488. http://dx.doi.org/10.1098/rsta.2012.0488.
Der volle Inhalt der QuelleChan, Shun-Chiao, Yu-Lin Cheng, Bor Kae Chang und Che-Wun Hong. „DFT calculation in design of near-infrared absorbing nitrogen-doped graphene quantum dots“. Physical Chemistry Chemical Physics 24, Nr. 3 (2022): 1580–89. http://dx.doi.org/10.1039/d1cp04572e.
Der volle Inhalt der QuelleMedvedev, Michael G., Ivan S. Bushmarinov, Jianwei Sun, John P. Perdew und Konstantin A. Lyssenko. „Density functional theory is straying from the path toward the exact functional“. Science 355, Nr. 6320 (05.01.2017): 49–52. http://dx.doi.org/10.1126/science.aah5975.
Der volle Inhalt der QuelleDemir, Hakan, Jeffery A. Greathouse, Chad L. Staiger, John J. Perry IV, Mark D. Allendorf und David S. Sholl. „DFT-based force field development for noble gas adsorption in metal organic frameworks“. Journal of Materials Chemistry A 3, Nr. 46 (2015): 23539–48. http://dx.doi.org/10.1039/c5ta06201b.
Der volle Inhalt der QuelleLin, Lin, Jianfeng Lu und Lexing Ying. „Numerical methods for Kohn–Sham density functional theory“. Acta Numerica 28 (01.05.2019): 405–539. http://dx.doi.org/10.1017/s0962492919000047.
Der volle Inhalt der QuelleDissertationen zum Thema "Density functional theory (DFT)"
Brincat, Nick. „Density functional theory investigation of the uranium oxides“. Thesis, University of Bath, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.665418.
Der volle Inhalt der QuelleZurek, Eva D. „Density functional theory (DFT) studies of solids and molecules“. [S.l. : s.n.], 2006. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-27968.
Der volle Inhalt der QuelleReinhold, Meike. „A DFT study of organometallic reaction mechanisms“. Thesis, University of York, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247161.
Der volle Inhalt der QuelleTang, Miru. „DENSITY FUNCTIONAL THEORY STUDIES ON THE STRUCTURE AND CATALYTIC ACTIVITY OF METAL OXIDES“. OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1602.
Der volle Inhalt der QuelleJirlén, Johan, und Emil Kauppi. „Carbon Nanotube Raman Spectra Calculations using Density Functional Theory“. Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-62169.
Der volle Inhalt der QuelleSupervisors: Daniel Hedman, Andreas Larsson and Sven Öberg
F7042T - Project in Engineering Physics
Elgammal, Karim. „Density Functional Theory Calculations of Graphene based Humidity and Carbon Dioxide Sensors“. Licentiate thesis, KTH, Materialfysik, MF, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-180761.
Der volle Inhalt der QuelleGrafen har många intressanta fysikaliska egenskaper, vilket gör det användbart för många tillämpningar. I detta arbete har vi teoretiskt undersökt möjligheten att använda grafen som gassensor för koldioxid och fukt. Adsorberade koldioxid- och vattenmolekyler modelleras ovanför ytan av ett lager grafen, som i sig ligger ovanpå en av två typer av kiseldioxidsubstrat eller ett aluminiumoxidsubstrat. Vi har utvärderat förändringar i de elektroniska och strukturella egenskaperna hos grafenlagret i närvaro av de beskrivna molekylerna samt åtföljande substrat. Vi utför studien med ab-initio beräkningar baserade på täthetsfunktionalteori (DFT), som möjliggör snabba, korrekta och effektiva elektronstruktursberäkningar. Framför allt fokuserar vi på effekten av defekter i underlaget, och hur dessa påverkar egenskaperna hos grafenlagret. Defekter i underlaget bidrar genom att införa elektroniska band som leder till dopningseffekter i grafenlagret, vilket i sin tur tillsammans med närvaron av adsorbatmolekylerna leder till förändringar av den elektroniska laddningsfördelningen i systemet. Vi tillhandahåller s.k. laddningsdensitet-skillnadsfigurer som visualiserar dessa förändringar. Vi har även beräknat jämviktsavståndet mellan adsorbatmolekylerna och grafenlagret tillsammans med respektive minimienergikonfigurationer för molekylerna, Vi åksa tillhandahåller täthet av stater, Löwdin laddningar och arbetsfunktion för fortsatta undersökningar.
QC 20160218
Beal, Nathan James. „Broken symmetry density functional theory studies of multinuclear manganese metalloproteins“. Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/broken-symmetry-density-functional-theory-studies-of-multinuclear-manganese-metalloproteins(37a587b1-0e91-4d9d-af74-95dd57573476).html.
Der volle Inhalt der QuelleDogaru, Daniela. „Hydrogenase Inhibition by O2: Density Functional Theory/Molecular Mechanics Investigation“. Cleveland State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=csu1231721611.
Der volle Inhalt der QuelleGRECO, CLAUDIO. „A DFT and QM/MM Investigation on Models Related to the [FeFe]-Hydrogenase Active Site“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2007. http://hdl.handle.net/10281/45775.
Der volle Inhalt der QuelleTelyatnyk, Lyudmyla. „Magnetic Resonance Parameters of Radicals Studied by Density Functional Theory Methods“. Licentiate thesis, KTH, Biotechnology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1727.
Der volle Inhalt der QuelleThe recent state of art in the magnetic resonance area putsforward the electron paramagnetic resonance, EPR, and nuclearmagnetic resonance, NMR, experiments on prominent positions forinvestigations of molecular and electronic structure. A mostdifficult aspect of such experiments is usually the properinterpretation of data obtained from high-resolution spectra,that, however, at the same time opens a great challenge forpure theoretical methods to interpret the spectral features.This thesis constitutes an effort in this respect, as itpresents and discusses calculations of EPR and NMR parametersof paramagnetic molecules. The calculations are based on newmethodology for determination of properties of paramagneticmolecules in the framework of the density functional theory,which has been developed in our laboratory.
Paramagnetic molecules are, in some sense, very special. Thepresence of unpaired electrons essentially modifies theirspectra. The experimental determination of the magneticresonance parameters of such molecules is, especially in theNMR case, quite complicated and requires special techniques ofspectral detection. The significant efforts put into suchexperiments are completely justi fied though by the importantroles of paramagnetic species playing in many areas, such as,for example, molecular magnets, active centers in biologicalsystems, and defects in inorganic conductive materials.
The first two papers of this thesis deal with thetheoretical determination of NMR parameters, such as thenuclear shielding tensors and the chemical shifts, inparamagnetic nitroxides that form core units in molecularmagnets. The developed methodology aimed to realize highaccuracy in the calculations in order to achieve successfulapplications for the mentioned systems. Theeffects of hydrogenbonding are also described in that context. Our theory forevaluation of nuclear shielding tensors in paramagneticmolecules is consistent up to the second order in the finestructure constant and considers orbital, fully isotropicdipolar, and isotropic contact contributions to the shieldingtensor.
The next three projects concern electron paramagneticresonance. The wellknown EPR parameters, such as the g-tensorsand the hyperfine coupling constants are explored. Calculationsof electronic g-tensors were carried out in the framework of aspin-restricted open-shell Kohn-Sham method combined with thelinear response theory recently developed in our laboratory.The spincontamination problem is then automatically avoided.The solvent effects, described by the polarizable continuummodel, are also considered. For calculations of the hyperfinecoupling constants a so-called restricted-unrestricted approachhas been developed in the context of density functional theory.Comparison of experimentally and theoretically determinedparameters shows that qualitative mutual agreement of the twosets of data can be easily achieved by employing the proposedformalisms.
Bücher zum Thema "Density functional theory (DFT)"
Ramasami, Ponnadurai, Hrsg. Density Functional Theory. Berlin, Boston: De Gruyter, 2018. http://dx.doi.org/10.1515/9783110568196.
Der volle Inhalt der QuelleDreizler, Reiner M., und Eberhard K. U. Gross. Density Functional Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-86105-5.
Der volle Inhalt der QuelleGross, Eberhard K. U., und Reiner M. Dreizler, Hrsg. Density Functional Theory. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-9975-0.
Der volle Inhalt der QuelleEngel, Eberhard, und Reiner M. Dreizler. Density Functional Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14090-7.
Der volle Inhalt der QuelleF, Nalewajski R., Hrsg. Density functional theory. Berlin: Springer, 1996.
Den vollen Inhalt der Quelle findenGross, E. K. U. 1953-, Dreizler Reiner M, North Atlantic Treaty Organization. Scientific Affairs Division. und NATO Advanced Study Institute on Density Functional Theory (1993 : Il Ciocco, Italy), Hrsg. Density functional theory. New York: Plenum Press, 1995.
Den vollen Inhalt der Quelle findenGross, Eberhard K. U. Density Functional Theory. Boston, MA: Springer US, 1995.
Den vollen Inhalt der Quelle findenCancès, Eric, und Gero Friesecke, Hrsg. Density Functional Theory. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22340-2.
Der volle Inhalt der QuelleSahni, Viraht. Quantal Density Functional Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09624-6.
Der volle Inhalt der QuelleSahni, Viraht. Quantal Density Functional Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49842-2.
Der volle Inhalt der QuelleBuchteile zum Thema "Density functional theory (DFT)"
Kvaal, Simen. „Moreau–Yosida Regularization in DFT“. In Density Functional Theory, 267–306. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22340-2_5.
Der volle Inhalt der QuelleElstner, Marcus, Qiang Cui und Maja Gruden. „Density Functional Theory (DFT)“. In Introduction to Statistical Thermodynamics, 515–33. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-54994-6_21.
Der volle Inhalt der QuelleColò, Gianluca. „Nuclear Density Functional Theory (DFT)“. In Handbook of Nuclear Physics, 2081–110. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6345-2_14.
Der volle Inhalt der QuelleGulati, Archa, und Rita Kakkar. „6. DFT studies on storage and adsorption capacities of gases on MOFs“. In Density Functional Theory, herausgegeben von Ponnadurai Ramasami, 83–112. Berlin, Boston: De Gruyter, 2018. http://dx.doi.org/10.1515/9783110568196-006.
Der volle Inhalt der QuellePalafox, M. Alcolea. „10. DFT computations on vibrational spectra: Scaling procedures to improve the wavenumbers“. In Density Functional Theory, herausgegeben von Ponnadurai Ramasami, 147–92. Berlin, Boston: De Gruyter, 2018. http://dx.doi.org/10.1515/9783110568196-010.
Der volle Inhalt der QuelleDhar, Namrata, und Debnarayan Jana. „5. A DFT perspective analysis of optical properties of defected germanene mono-layer“. In Density Functional Theory, herausgegeben von Ponnadurai Ramasami, 65–82. Berlin, Boston: De Gruyter, 2018. http://dx.doi.org/10.1515/9783110568196-005.
Der volle Inhalt der QuelleChowdhury, Suman, und Debnarayan Jana. „1. Optical properties of monolayer BeC under an external electric field: A DFT approach“. In Density Functional Theory, herausgegeben von Ponnadurai Ramasami, 1–18. Berlin, Boston: De Gruyter, 2018. http://dx.doi.org/10.1515/9783110568196-001.
Der volle Inhalt der Quellede Boeij, P. L. „Solids from Time-Dependent Current DFT“. In Time-Dependent Density Functional Theory, 287–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-35426-3_19.
Der volle Inhalt der QuelleSahni, Viraht. „Application of Q-DFT to Atoms in Excited States“. In Quantal Density Functional Theory II, 249–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92229-2_13.
Der volle Inhalt der QuelleSahni, Viraht. „Application of Q-DFT to the Metal–Vacuum Interface“. In Quantal Density Functional Theory II, 303–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92229-2_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Density functional theory (DFT)"
Colo, Gianluca, Francesco Marino, Carlo Barbieri, Alessandro Lovato und Francesco Pederiva. „Nuclear Density Functional Theory (DFT): perspectives and ab initio-based functionals“. In 10th International Conference on Quarks and Nuclear Physics, 200. Trieste, Italy: Sissa Medialab, 2025. https://doi.org/10.22323/1.465.0200.
Der volle Inhalt der QuelleNematulloev, Sarvarkhodzha, Razan O. Nughays, Saidkhodzha Nematulloev, Simil Thomas, Dipti Naphade, Thomas D. Anthopoulos, Osman M. Bakr und Omar F. Abdelsaboor. „The nature of the carrier dynamics and contrast formation on the photoactive material surfaces: insights from ultrafast imaging to density functional theory (DFT)“. In Ultrafast Phenomena and Nanophotonics XXIX, herausgegeben von Markus Betz und Abdulhakem Y. Elezzabi, 15. SPIE, 2025. https://doi.org/10.1117/12.3040225.
Der volle Inhalt der QuelleKushwaha, Aditya, Shalini Vardhan und Neeraj Goel. „Engineering MoSe2 Defects via SHI Irradiation for Improved NH3 Gas Sensing: A DFT Study“. In JSAP-Optica Joint Symposia, 18a_A35_6. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.18a_a35_6.
Der volle Inhalt der QuelleBharti, Neetu Raj, Aditya Kushwaha und Neeraj Goel. „Pt Nanocluster Decoration on WSe2 for Enhanced NO2 Sensing: A DFT Investigation“. In JSAP-Optica Joint Symposia, 18a_A35_7. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.18a_a35_7.
Der volle Inhalt der QuelleMattsson, Thomas R., Rudolph J. Magyar, Mark Elert, Michael D. Furnish, William W. Anderson, William G. Proud und William T. Butler. „DENSITY FUNCTIONAL THEORY (DFT) SIMULATIONS OF SHOCKED LIQUID XENON“. In SHOCK COMPRESSION OF CONDENSED MATTER 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP, 2009. http://dx.doi.org/10.1063/1.3295261.
Der volle Inhalt der QuelleHuang, Lulu, Andrew Shabaev, Samuel G. Lambrakos, Noam Bernstein, Verne L. Jacobs, Daniel Finkenstadt und Lou Massa. „Dielectric Response of β-HMX at THz Frequencies Calculated by Density Functional Theory“. In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47669.
Der volle Inhalt der QuelleTachikawa, Hiroto, Tetsuji Iyama und Hiroshi Kawabata. „Molecular design of functionalized fullerenes and graphenes: Density functional theory (DFT) study“. In 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528697.
Der volle Inhalt der QuelleDincer, S., M. S. Dincer, H. Duzkaya und S. S. Tezcan. „Analysis of Molecular Orbital Properties of SF6 with Density Functional Theory (DFT)“. In 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE, 2019. http://dx.doi.org/10.1109/ismsit.2019.8932772.
Der volle Inhalt der QuelleMini, Sreejaya Mohanan, Vineeth Muraleedharan, Haridev Madathil, Devika Rajeev, Pancharatna Damodaran Pattath und Moumita Gangopadhyay. „Photophysical and density functional theory (DFT) studies on naphthalene-based organic nanoparticles“. In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIAL SCIENCE AND CHEMISTRY (ICAMSC – 2023). AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0222628.
Der volle Inhalt der QuelleIyama, Tetsuji, Hiroshi Kawabata, Takahiro Fukuzumi und Hiroto Tachikawa. „Electronic states of organic radical-functionalized graphenes and fullerenes: Density functional theory (DFT) study“. In 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528698.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Density functional theory (DFT)"
Lutz, Jesse, Mi'Kayla Word, Daniel Jensen, Laura McCaslin, Judit Zador, Joshua Hubbard und Amanda Dewyer. Density functional theory (DFT) study of UF6 hydrolysis: reaction pathways, spectroscopy, and chemical kinetics. Office of Scientific and Technical Information (OSTI), September 2024. http://dx.doi.org/10.2172/2462977.
Der volle Inhalt der QuelleRoot, Seth, John H. Carpenter, Kyle Robert Cochrane und Thomas Kjell Rene Mattsson. Equation of state of CO2 : experiments on Z, density functional theory (DFT) simulations, and tabular models. Office of Scientific and Technical Information (OSTI), Oktober 2012. http://dx.doi.org/10.2172/1055894.
Der volle Inhalt der QuelleCarpenter, John H., Seth Root, Kyle Robert Cochrane, Dawn G. Flicker und Thomas Kjell Rene Mattsson. Equation of state of argon : experiments on Z, density functional theory (DFT) simulations, and wide-range model. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1055655.
Der volle Inhalt der QuelleMiller, Michael E. A Density Functional Theory (DFT) Study of the Proposed Insensitive High Energy Density Material (IHEDM) 2-(Nitroaminomethylene)-4,5-Dinitrocyclopenta-3,5-Di-Nitroamine (NDDN). Fort Belvoir, VA: Defense Technical Information Center, Oktober 2011. http://dx.doi.org/10.21236/ada551809.
Der volle Inhalt der QuelleWeinlandt, Thomas, Dan Kaplan und Venkataraman Swaminathan. A Method to Formulate the Unit Cell for Density Functional Theory (DFT) Calculations of the Electronic Band Structure of Heterostructures of Two-dimensional Nanosheets. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ada623945.
Der volle Inhalt der QuelleHill, C. Summary Report of the 7th Biennial Technical Meeting of the Code Centres Network of the International Atomic and Molecular Code Centres Network: Database Services for Radiation Damage in Nuclear Materials. IAEA Nuclear Data Section, Oktober 2021. http://dx.doi.org/10.61092/iaea.25ex-cn8n.
Der volle Inhalt der QuelleRuangpornvisuti, Vithaya. Surfaces properties of Zirconia and its adsorption of gases : Research report. Chulalongkorn University, 2015. https://doi.org/10.58837/chula.res.2015.36.
Der volle Inhalt der QuelleSalsbury Jr., Freddie. Magnetic fields and density functional theory. Office of Scientific and Technical Information (OSTI), Februar 1999. http://dx.doi.org/10.2172/753893.
Der volle Inhalt der QuelleWu, Jianzhong. Density Functional Theory for Phase-Ordering Transitions. Office of Scientific and Technical Information (OSTI), März 2016. http://dx.doi.org/10.2172/1244653.
Der volle Inhalt der QuelleFeinblum, David V., Daniel Burrill, Charles Edward Starrett und Marc Robert Joseph Charest. Simulating Warm Dense Matter using Density Functional Theory. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1209460.
Der volle Inhalt der Quelle