Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Detectron2“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Detectron2" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Detectron2"
Abdusalomov, Akmalbek Bobomirzaevich, Bappy MD Siful Islam, Rashid Nasimov, Mukhriddin Mukhiddinov und Taeg Keun Whangbo. „An Improved Forest Fire Detection Method based on the Detectron2 Model and a Deep Learning Approach“. Sensors 23, Nr. 3 (29.01.2023): 1512. http://dx.doi.org/10.3390/s23031512.
Der volle Inhalt der QuelleKouvaras, Loukas, und George P. Petropoulos. „A Novel Technique Based on Machine Learning for Detecting and Segmenting Trees in Very High Resolution Digital Images from Unmanned Aerial Vehicles“. Drones 8, Nr. 2 (01.02.2024): 43. http://dx.doi.org/10.3390/drones8020043.
Der volle Inhalt der QuelleBhaddurgatte, Vishesh R., Supreeth S. Koushik, Shushruth S und Kiran Y. C. „Detection Of Adulterants in Pistachio Using Machine Learning Technique“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, Nr. 01 (06.01.2025): 1–9. https://doi.org/10.55041/ijsrem40523.
Der volle Inhalt der QuelleShi, Zijing. „The distinguish between cats and dogs based on Detectron2 for automatic feeding“. Applied and Computational Engineering 38, Nr. 1 (22.01.2024): 35–40. http://dx.doi.org/10.54254/2755-2721/38/20230526.
Der volle Inhalt der QuelleChincholi, Farheen, und Harald Koestler. „Detectron2 for Lesion Detection in Diabetic Retinopathy“. Algorithms 16, Nr. 3 (07.03.2023): 147. http://dx.doi.org/10.3390/a16030147.
Der volle Inhalt der QuelleMullins, Connor C., Travis J. Esau, Qamar U. Zaman, Ahmad A. Al-Mallahi und Aitazaz A. Farooque. „Exploiting 2D Neural Network Frameworks for 3D Segmentation Through Depth Map Analytics of Harvested Wild Blueberries (Vaccinium angustifolium Ait.)“. Journal of Imaging 10, Nr. 12 (15.12.2024): 324. https://doi.org/10.3390/jimaging10120324.
Der volle Inhalt der QuelleCastillo, Darwin, María José Rodríguez-Álvarez, René Samaniego und Vasudevan Lakshminarayanan. „Models to Identify Small Brain White Matter Hyperintensity Lesions“. Applied Sciences 15, Nr. 5 (06.03.2025): 2830. https://doi.org/10.3390/app15052830.
Der volle Inhalt der QuelleRani, Anju, Daniel Ortiz-Arroyo und Petar Durdevic. „Defect Detection in Synthetic Fibre Ropes using Detectron2 Framework“. Applied Ocean Research 150 (September 2024): 104109. http://dx.doi.org/10.1016/j.apor.2024.104109.
Der volle Inhalt der QuelleWen, Hao, Chang Huang und Shengmin Guo. „The Application of Convolutional Neural Networks (CNNs) to Recognize Defects in 3D-Printed Parts“. Materials 14, Nr. 10 (15.05.2021): 2575. http://dx.doi.org/10.3390/ma14102575.
Der volle Inhalt der QuelleSankar, Aravinthan, Kunal Chaturvedi, Al-Akhir Nayan, Mohammad Hesam Hesamian, Ali Braytee und Mukesh Prasad. „Utilizing Generative Adversarial Networks for Acne Dataset Generation in Dermatology“. BioMedInformatics 4, Nr. 2 (09.04.2024): 1059–70. http://dx.doi.org/10.3390/biomedinformatics4020059.
Der volle Inhalt der QuelleBücher zum Thema "Detectron2"
Pham, Van Vung, und Tommy Dang. Hands-On Computer Vision with Detectron2: Develop Object Detection and Segmentation Models with a Code and Visualization Approach. de Gruyter GmbH, Walter, 2023.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Detectron2"
Mujagić, Adnan, Amar Mujagić und Dželila Mehanović. „Food Recognition and Segmentation Using Detectron2 Framework“. In Lecture Notes in Networks and Systems, 409–19. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-71694-2_30.
Der volle Inhalt der QuelleGalli, Hugo, Michelli Loureiro, Felipe Loureiro und Edimilson Santos. „Convolutional Neural Network-Based Brain Tumor Segmentation Using Detectron2“. In Intelligent Systems Design and Applications, 80–89. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64813-7_10.
Der volle Inhalt der QuelleSoltani, Hama, Mohamed Amroune, Issam Bendib und Mohamed-Yassine Haouam. „Application of Faster-RCNN with Detectron2 for Effective Breast Tumor Detection in Mammography“. In 13th International Conference on Information Systems and Advanced Technologies “ICISAT 2023”, 57–63. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-60594-9_7.
Der volle Inhalt der QuellePriyanka, Amrita Mohan, K. N. Singh, A. K. Singh und A. K. Agrawal. „D2StegE: Using Detectron2 to Segment Medical Image with Security Through Steganography and Encryption“. In Communications in Computer and Information Science, 49–63. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-81336-8_4.
Der volle Inhalt der QuelleAli, Ammar Alhaj, Rasin Katta, Roman Jasek, Bronislav Chramco und Said Krayem. „COVID-19 Detection from Chest X-Ray Images Using Detectron2 and Faster R-CNN“. In Data Science and Algorithms in Systems, 37–53. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21438-7_3.
Der volle Inhalt der QuelleMagwili, Glenn, Michael Jherriecho Christiane Ayson und Mae Anne Armas. „Admonishment System for Human Physical Distancing Violators Using Faster Region-Based Convolutional Neural Network with Detectron2 Library“. In Lecture Notes in Networks and Systems, 356–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90321-3_29.
Der volle Inhalt der QuelleRestrepo-Arias, Juan Felipe, Paulina Arregocés-Guerra und John Willian Branch-Bedoya. „Crops Classification in Small Areas Using Unmanned Aerial Vehicles (UAV) and Deep Learning Pre-trained Models from Detectron2“. In Handbook on Decision Making, 273–91. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08246-7_12.
Der volle Inhalt der QuelleKömeçoğlu, Yavuz, Serdar Akyol, Fethi Su und Başak Buluz Kömeçoğlu. „Deep Learning for Information Extraction From Digital Documents“. In Machine Learning for Societal Improvement, Modernization, and Progress, 180–99. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-4045-2.ch009.
Der volle Inhalt der Quelle„A11*6 Element Pyroelectric Detectro Array Utilizing Self-Polarized PZT Thin Films Grown by Sputtering“. In Science and Technology of Integrated Ferroelectrics, 563–70. CRC Press, 2001. http://dx.doi.org/10.1201/9781482283365-51.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Detectron2"
K V, Adith, Aidan Dsouza, B. M. Kripa, D. Sathvik Pai und Gayana M N. „DStruct: Handwritten Data Structure Problem Solving Using Detectron2 and YOLO“. In 2024 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/discover62353.2024.10750745.
Der volle Inhalt der QuelleLytvyn, Anastasiia, Kateryna Posokhova, Maksym Tymkovych, Oleg Avrunin, Oleksandra Hubenia und Birgit Glasmacher. „Object Detection for Virtual Assistant in Cryolaboratory Based on Detectron2 Framework“. In 2024 IEEE 17th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 534–39. IEEE, 2024. http://dx.doi.org/10.1109/tcset64720.2024.10755685.
Der volle Inhalt der QuelleAyadi, Nouamane, Abdelilah Et-Taleby, Yassine Chaibi, Cheikhelwely Elwely Salem, Mohamed Benslimane und Zakaria Chalh. „Photovoltaic hotspot fault detection based on detectron2 with faster R-CNN“. In 2024 3rd International Conference on Embedded Systems and Artificial Intelligence (ESAI), 1–12. IEEE, 2024. https://doi.org/10.1109/esai62891.2024.10913808.
Der volle Inhalt der QuelleBansal, Aayushi, Rewa Sharma und Mamta Kathuria. „A Comparative Study of Object Detection and Pose Detection for Fall Detection using Detectron2“. In 2024 3rd Edition of IEEE Delhi Section Flagship Conference (DELCON), 1–8. IEEE, 2024. https://doi.org/10.1109/delcon64804.2024.10866659.
Der volle Inhalt der QuelleS, Raveena, und Surendran R. „Detectron2 Powered-Image Segmentation and Object Detection for Smart Weed Control Program in Coffee Plantation“. In 2024 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), 812–19. IEEE, 2024. https://doi.org/10.1109/3ict64318.2024.10824261.
Der volle Inhalt der QuelleSingh, Ritik, Shubham Shetty, Gaurav Patil und Pramod J. Bide. „Helmet Detection Using Detectron2 and EfficientDet“. In 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE, 2021. http://dx.doi.org/10.1109/icccnt51525.2021.9579953.
Der volle Inhalt der QuelleHeartlin Maria, H., A. Maria Jossy, S. Malarvizhi und K. Saravanan. „Automated detection of ovarian tumors using Detectron2 network“. In PROCEEDING OF INTERNATIONAL CONFERENCE ON ENERGY, MANUFACTURE, ADVANCED MATERIAL AND MECHATRONICS 2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0126164.
Der volle Inhalt der QuelleChoudhari, Rutvik, Shubham Goel, Yash Patel und Sunil Ghane. „Traffic Rule Violation Detection using Detectron2 and Yolov7“. In 2023 World Conference on Communication & Computing (WCONF). IEEE, 2023. http://dx.doi.org/10.1109/wconf58270.2023.10235130.
Der volle Inhalt der QuelleMahammad, Farooq Sunar, K. V. Sai Phani, N. Ramadevi, G. Siva Nageswara Rao, O. Bhaskaru und Parumanchala Bhaskar. „Detecting social distancing by using Detectron2 and OpenCV“. In INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ELECTRONICS AND COMMUNICATION ENGINEERING - 2023. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0212686.
Der volle Inhalt der QuelleAbdallah, Asma Ben, Abdelaziz Kallel, Mouna Dammak und Ahmed Ben Ali. „Olive tree and shadow instance segmentation based on Detectron2“. In 2022 6th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). IEEE, 2022. http://dx.doi.org/10.1109/atsip55956.2022.9805897.
Der volle Inhalt der Quelle