Zeitschriftenartikel zum Thema „Detectron2“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Detectron2" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Abdusalomov, Akmalbek Bobomirzaevich, Bappy MD Siful Islam, Rashid Nasimov, Mukhriddin Mukhiddinov und Taeg Keun Whangbo. „An Improved Forest Fire Detection Method based on the Detectron2 Model and a Deep Learning Approach“. Sensors 23, Nr. 3 (29.01.2023): 1512. http://dx.doi.org/10.3390/s23031512.
Der volle Inhalt der QuelleKouvaras, Loukas, und George P. Petropoulos. „A Novel Technique Based on Machine Learning for Detecting and Segmenting Trees in Very High Resolution Digital Images from Unmanned Aerial Vehicles“. Drones 8, Nr. 2 (01.02.2024): 43. http://dx.doi.org/10.3390/drones8020043.
Der volle Inhalt der QuelleBhaddurgatte, Vishesh R., Supreeth S. Koushik, Shushruth S und Kiran Y. C. „Detection Of Adulterants in Pistachio Using Machine Learning Technique“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, Nr. 01 (06.01.2025): 1–9. https://doi.org/10.55041/ijsrem40523.
Der volle Inhalt der QuelleShi, Zijing. „The distinguish between cats and dogs based on Detectron2 for automatic feeding“. Applied and Computational Engineering 38, Nr. 1 (22.01.2024): 35–40. http://dx.doi.org/10.54254/2755-2721/38/20230526.
Der volle Inhalt der QuelleChincholi, Farheen, und Harald Koestler. „Detectron2 for Lesion Detection in Diabetic Retinopathy“. Algorithms 16, Nr. 3 (07.03.2023): 147. http://dx.doi.org/10.3390/a16030147.
Der volle Inhalt der QuelleMullins, Connor C., Travis J. Esau, Qamar U. Zaman, Ahmad A. Al-Mallahi und Aitazaz A. Farooque. „Exploiting 2D Neural Network Frameworks for 3D Segmentation Through Depth Map Analytics of Harvested Wild Blueberries (Vaccinium angustifolium Ait.)“. Journal of Imaging 10, Nr. 12 (15.12.2024): 324. https://doi.org/10.3390/jimaging10120324.
Der volle Inhalt der QuelleCastillo, Darwin, María José Rodríguez-Álvarez, René Samaniego und Vasudevan Lakshminarayanan. „Models to Identify Small Brain White Matter Hyperintensity Lesions“. Applied Sciences 15, Nr. 5 (06.03.2025): 2830. https://doi.org/10.3390/app15052830.
Der volle Inhalt der QuelleRani, Anju, Daniel Ortiz-Arroyo und Petar Durdevic. „Defect Detection in Synthetic Fibre Ropes using Detectron2 Framework“. Applied Ocean Research 150 (September 2024): 104109. http://dx.doi.org/10.1016/j.apor.2024.104109.
Der volle Inhalt der QuelleWen, Hao, Chang Huang und Shengmin Guo. „The Application of Convolutional Neural Networks (CNNs) to Recognize Defects in 3D-Printed Parts“. Materials 14, Nr. 10 (15.05.2021): 2575. http://dx.doi.org/10.3390/ma14102575.
Der volle Inhalt der QuelleSankar, Aravinthan, Kunal Chaturvedi, Al-Akhir Nayan, Mohammad Hesam Hesamian, Ali Braytee und Mukesh Prasad. „Utilizing Generative Adversarial Networks for Acne Dataset Generation in Dermatology“. BioMedInformatics 4, Nr. 2 (09.04.2024): 1059–70. http://dx.doi.org/10.3390/biomedinformatics4020059.
Der volle Inhalt der QuelleМиљуш, Сара. „ДЕТЕКЦИЈА СТЕНОЗА И ОКЛУЗИЈА КОРОНАРНИХ АРТЕРИЈА“. Zbornik radova Fakulteta tehničkih nauka u Novom Sadu 39, Nr. 10 (09.10.2024): 1532–35. http://dx.doi.org/10.24867/28rb04miljus.
Der volle Inhalt der QuelleAbiamamela Obi-Obuoha, Victor Samuel Rizama, Ifeanyichukwu Okafor, Haggai Edore Ovwenkekpere, Kehinde Obe und Jeremiah Ekundayo. „Real-time traffic object detection using detectron 2 with faster R-CNN“. World Journal of Advanced Research and Reviews 24, Nr. 2 (30.11.2024): 2173–89. http://dx.doi.org/10.30574/wjarr.2024.24.2.3559.
Der volle Inhalt der QuelleEvangelista, Ivan Roy S., Lenmar T. Catajay, Maria Gemel B. Palconit, Mary Grace Ann C. Bautista, Ronnie S. Concepcion II, Edwin Sybingco, Argel A. Bandala und Elmer P. Dadios. „Detection of Japanese Quails (Coturnix japonica) in Poultry Farms Using YOLOv5 and Detectron2 Faster R-CNN“. Journal of Advanced Computational Intelligence and Intelligent Informatics 26, Nr. 6 (20.11.2022): 930–36. http://dx.doi.org/10.20965/jaciii.2022.p0930.
Der volle Inhalt der QuelleMoysiadis, Vasileios, Ilias Siniosoglou, Georgios Kokkonis, Vasileios Argyriou, Thomas Lagkas, Sotirios K. Goudos und Panagiotis Sarigiannidis. „Cherry Tree Crown Extraction Using Machine Learning Based on Images from UAVs“. Agriculture 14, Nr. 2 (18.02.2024): 322. http://dx.doi.org/10.3390/agriculture14020322.
Der volle Inhalt der QuelleMg, Wai Hnin Eaindrar, Pyke Tin, Masaru Aikawa, Ikuo Kobayashi, Yoichiro Horii, Kazuyuki Honkawa und Thi Thi Zin. „Customized Tracking Algorithm for Robust Cattle Detection and Tracking in Occlusion Environments“. Sensors 24, Nr. 4 (11.02.2024): 1181. http://dx.doi.org/10.3390/s24041181.
Der volle Inhalt der QuelleDong, Changhao. „Exploring visual techniques for indoor intrusion detection using detectron2 and Faster RCNN“. Applied and Computational Engineering 36, Nr. 1 (22.01.2024): 230–36. http://dx.doi.org/10.54254/2755-2721/36/20230452.
Der volle Inhalt der QuelleBourassa, Albert, Philippe Apparicio, Jérémy Gelb und Geneviève Boisjoly. „Canopy Assessment of Cycling Routes: Comparison of Videos from a Bicycle-Mounted Camera and GPS and Satellite Imagery“. ISPRS International Journal of Geo-Information 12, Nr. 1 (27.12.2022): 6. http://dx.doi.org/10.3390/ijgi12010006.
Der volle Inhalt der QuelleMurugesan, Ramasamy, Gokul Adethya T., Ventesh A., B. Azhaganathan und P. D. D. Domnic. „Instance segmentation of neuronal cells using U-Net, mask R-CNN, and Detectron2“. International Journal of Biomedical Engineering and Technology 45, Nr. 2 (2024): 129–49. http://dx.doi.org/10.1504/ijbet.2024.138735.
Der volle Inhalt der QuellePurnadi, N. F., I. Jaya und M. Iqbal. „Detection and identification of Red Snapper (Lutjanus gibbus and Lutjanus malabaricus) and grouper (Plectropomus leopardus and Plectropomus maculatus) with deep learning“. IOP Conference Series: Earth and Environmental Science 1251, Nr. 1 (01.10.2023): 012043. http://dx.doi.org/10.1088/1755-1315/1251/1/012043.
Der volle Inhalt der QuelleWianzah, Dastin Arjuna, und Ahmad Ridha. „PROTOTIPE ALAT IDENTIFIKASI POLA NERVE RING PADA IRIS MATA MENGGUNAKAN RASPBERRY PI DAN DETECTRON2“. Kurawal - Jurnal Teknologi, Informasi dan Industri 7, Nr. 2 (27.10.2024): 35–44. http://dx.doi.org/10.33479/kurawal.v7i2.1101.
Der volle Inhalt der QuelleLim, Jae-Jun, Dae-Won Kim, Woon-Hee Hong, Min Kim, Dong-Hoon Lee, Sun-Young Kim und Jae-Hoon Jeong. „Application of Convolutional Neural Network (CNN) to Recognize Ship Structures“. Sensors 22, Nr. 10 (18.05.2022): 3824. http://dx.doi.org/10.3390/s22103824.
Der volle Inhalt der QuelleAmerikanos, Paris, und Ilias Maglogiannis. „Image Analysis in Digital Pathology Utilizing Machine Learning and Deep Neural Networks“. Journal of Personalized Medicine 12, Nr. 9 (01.09.2022): 1444. http://dx.doi.org/10.3390/jpm12091444.
Der volle Inhalt der QuelleWang, Nan, Hongbo Liu, Yicheng Li, Weijun Zhou und Mingquan Ding. „Segmentation and Phenotype Calculation of Rapeseed Pods Based on YOLO v8 and Mask R-Convolution Neural Networks“. Plants 12, Nr. 18 (20.09.2023): 3328. http://dx.doi.org/10.3390/plants12183328.
Der volle Inhalt der QuelleKothari, Kushal, Ajay Arjunwadkar, Hitesh Bhalerao und Savita Lade. „Fine-Grained Identification of Clothing Apparels“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 4 (30.04.2022): 3168–71. http://dx.doi.org/10.22214/ijraset.2022.42022.
Der volle Inhalt der QuelleButt, Marya, Nick Glas, Jaimy Monsuur, Ruben Stoop und Ander de Keijzer. „Application of YOLOv8 and Detectron2 for Bullet Hole Detection and Score Calculation from Shooting Cards“. AI 5, Nr. 1 (22.12.2023): 72–90. http://dx.doi.org/10.3390/ai5010005.
Der volle Inhalt der QuelleFernandes, Samuel, Alice Fialho und Isabel Patriarca. „Deteção e delimitação de corpos de água em imagens de satélite de alta resolução com aprendizagem profunda“. REVISTA INTERNACIONAL MAPPING 32, Nr. 214 (15.01.2024): 10–24. http://dx.doi.org/10.59192/mapping.442.
Der volle Inhalt der QuelleAli Husnain, Aftab Ahmad und Ayesha Saeed. „Enhancing agricultural health with AI: Drone-based machine learning for mango tree disease detection“. World Journal of Advanced Research and Reviews 23, Nr. 2 (30.08.2024): 1267–76. http://dx.doi.org/10.30574/wjarr.2024.23.2.2455.
Der volle Inhalt der QuelleRashmi, S., S. Srinath, Seema Deshmukh, S. Prashanth und Karthikeya Patil. „Cephalometric landmark annotation using transfer learning: Detectron2 and YOLOv8 baselines on a diverse cephalometric image dataset“. Computers in Biology and Medicine 183 (Dezember 2024): 109318. http://dx.doi.org/10.1016/j.compbiomed.2024.109318.
Der volle Inhalt der Quellede Almeida, Guilherme Pires Silva, Leonardo Nazário Silva dos Santos, Leandro Rodrigues da Silva Souza, Pablo da Costa Gontijo, Ruy de Oliveira, Matheus Cândido Teixeira, Mario De Oliveira, Marconi Batista Teixeira und Heyde Francielle do Carmo França. „Performance Analysis of YOLO and Detectron2 Models for Detecting Corn and Soybean Pests Employing Customized Dataset“. Agronomy 14, Nr. 10 (24.09.2024): 2194. http://dx.doi.org/10.3390/agronomy14102194.
Der volle Inhalt der QuelleNaik, Shivam, Khurram Azeem Hashmi, Alain Pagani, Marcus Liwicki, Didier Stricker und Muhammad Zeshan Afzal. „Investigating Attention Mechanism for Page Object Detection in Document Images“. Applied Sciences 12, Nr. 15 (26.07.2022): 7486. http://dx.doi.org/10.3390/app12157486.
Der volle Inhalt der QuelleSousa Júnior, Pedro Cavalcante, Luís Fabrício de Freitas Souza, José Jerovane da Costa Nascimento, Lucas Oliveira Santos, Adriell Gomes Marques, Francisco Eduardo Sales Ribeiro und Pedro Pedrosa Rebouças Filho. „Detection and Segmentation of Lungs Regions Using CNN Combined with Levelset“. Learning and Nonlinear Models 19, Nr. 1 (31.12.2021): 45–54. http://dx.doi.org/10.21528/lnlm-vol19-no1-art4.
Der volle Inhalt der QuelleSouza, Luís Fabrício de Freitas, Tassiana Marinho Castro, Lucas de Oliveira Santos, Adriell Gomes Marques, José Jerovane da Costa Nascimento, Matheus Araújo Santos, Guilherme F. Brilhante Severiano und Pedro Pedrosa Rebouças Filho. „Detection and Segmentation of Damaged Photovoltaic Panels Using Deep Learning and Fine-tuning in Images Captured by Drone“. Learning and Nonlinear Models 19, Nr. 2 (31.12.2021): 4–14. http://dx.doi.org/10.21528/lnlm-vol19-no2-art1.
Der volle Inhalt der QuelleAgarwal, Palak, Somya Goel, Simran Bhagat und Rahul Singh. „Autonomous Navigation Using Deep Learning“. International Journal for Research in Applied Science and Engineering Technology 13, Nr. 3 (31.03.2025): 1891–97. https://doi.org/10.22214/ijraset.2025.67672.
Der volle Inhalt der QuelleAlkhalis, Naufal, Husaini Husaini, Haekal Azief Haridhi, Cut Nadilla Maretna, Nur Fadli, Yudi Haditiar, Muhammad Nanda et al. „Implementasi Mask R-CNN pada Perhutungan Tinggi dan Lebar Karang untuk Memantau Pertumbuhan Transplantasi Karang“. Jurnal Teknologi Informasi dan Ilmu Komputer 11, Nr. 3 (31.07.2024): 603–14. http://dx.doi.org/10.25126/jtiik.938374.
Der volle Inhalt der QuelleBunnell, Arianna, Dustin Valdez, Thomas Wolfgruber, Aleen Altamirano, Brenda Hernandez, Peter Sadowski und John Shepherd. „Abstract P3-04-05: Artificial Intelligence Detects, Classifies, and Describes Lesions in Clinical Breast Ultrasound Images“. Cancer Research 83, Nr. 5_Supplement (01.03.2023): P3–04–05—P3–04–05. http://dx.doi.org/10.1158/1538-7445.sabcs22-p3-04-05.
Der volle Inhalt der QuelleSaxena, Saloni, Sneh Thorat, Prachi Jain, Rupal Mohanty und Trupti Baraskar. „Analysis of object detection techniques for bird species identification“. Journal of Physics: Conference Series 2325, Nr. 1 (01.08.2022): 012054. http://dx.doi.org/10.1088/1742-6596/2325/1/012054.
Der volle Inhalt der QuelleByzkrovnyi, Oleksandr, Kyrylo Smelyakov, Anastasiya Chupryna, Loreta Savulioniene und Paulius Sakalys. „COMPARISON OF POTENTIAL ROAD ACCIDENT DETECTION ALGORITHMS FOR MODERN MACHINE VISION SYSTEM“. ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference 3 (13.06.2023): 50–55. http://dx.doi.org/10.17770/etr2023vol3.7299.
Der volle Inhalt der QuelleMoysiadis, Vasileios, Georgios Kokkonis, Stamatia Bibi, Ioannis Moscholios, Nikolaos Maropoulos und Panagiotis Sarigiannidis. „Monitoring Mushroom Growth with Machine Learning“. Agriculture 13, Nr. 1 (16.01.2023): 223. http://dx.doi.org/10.3390/agriculture13010223.
Der volle Inhalt der QuellePeterson, T., und R. Green. „ASSESSING RISK PARAMETERS OF ACL INJURY VIA HUMAN POSE ESTIMATION“. Orthopaedic Proceedings 105-B, SUPP_3 (Februar 2023): 97. http://dx.doi.org/10.1302/1358-992x.2023.3.097.
Der volle Inhalt der QuelleAhamed, Asif Shakil, Tchepseu Pateng Uriche Cabrel, MA Chuang, Md Naoroj Jaman und Muhammad Maruf Billah. „Optimizing Automated Bone Fracture Detection Through Advanced Faster R-CNN Architectures Integrating Multi-Scale Feature Extraction and Data Augmentation Techniques“. European Journal of Biology and Medical Science Research 13, Nr. 1 (15.01.2025): 1–11. https://doi.org/10.37745/ejbmsr.2013/vol13n1111.
Der volle Inhalt der QuelleJabir, Brahim, Noureddine Falih und Khalid Rahmani. „Accuracy and Efficiency Comparison of Object Detection Open-Source Models“. International Journal of Online and Biomedical Engineering (iJOE) 17, Nr. 05 (20.05.2021): 165. http://dx.doi.org/10.3991/ijoe.v17i05.21833.
Der volle Inhalt der QuelleStrzępek, Krzysztof, Mateusz Salach, Bartosz Trybus, Karol Siwiec, Bartosz Pawłowicz und Andrzej Paszkiewicz. „Quantitative and Qualitative Analysis of Agricultural Fields Based on Aerial Multispectral Images Using Neural Networks“. Sensors 23, Nr. 22 (17.11.2023): 9251. http://dx.doi.org/10.3390/s23229251.
Der volle Inhalt der QuelleKumar, P. Dimpul. „Vision-Based Asphalt Pavement Defect Detection Using Deep CNN with BIM Integration“. International Journal for Research in Applied Science and Engineering Technology 12, Nr. 4 (30.04.2024): 1471–75. http://dx.doi.org/10.22214/ijraset.2024.59840.
Der volle Inhalt der QuelleMatadamas, Idarh, Erik Zamora und Teodulfo Aquino-Bolaños. „Detection and Classification of Agave angustifolia Haw Using Deep Learning Models“. Agriculture 14, Nr. 12 (02.12.2024): 2199. https://doi.org/10.3390/agriculture14122199.
Der volle Inhalt der QuelleTun, San Chain, Tsubasa Onizuka, Pyke Tin, Masaru Aikawa, Ikuo Kobayashi und Thi Thi Zin. „Revolutionizing Cow Welfare Monitoring: A Novel Top-View Perspective with Depth Camera-Based Lameness Classification“. Journal of Imaging 10, Nr. 3 (08.03.2024): 67. http://dx.doi.org/10.3390/jimaging10030067.
Der volle Inhalt der QuelleSilva, Josef Augusto Oberdan Souza, Vilson Soares de Siqueira, Marcio Mesquita, Luís Sérgio Rodrigues Vale, Thiago do Nascimento Borges Marques, Jhon Lennon Bezerra da Silva, Marcos Vinícius da Silva et al. „Deep Learning for Weed Detection and Segmentation in Agricultural Crops Using Images Captured by an Unmanned Aerial Vehicle“. Remote Sensing 16, Nr. 23 (24.11.2024): 4394. http://dx.doi.org/10.3390/rs16234394.
Der volle Inhalt der QuelleTitu, Md Fahim Shahoriar, Mahir Afser Pavel, Goh Kah Ong Michael, Hisham Babar, Umama Aman und Riasat Khan. „Real-Time Fire Detection: Integrating Lightweight Deep Learning Models on Drones with Edge Computing“. Drones 8, Nr. 9 (13.09.2024): 483. http://dx.doi.org/10.3390/drones8090483.
Der volle Inhalt der QuelleGuidi, Tommaso, Lorenzo Python, Matteo Forasassi, Costanza Cucci, Massimiliano Franci, Fabrizio Argenti und Andrea Barucci. „Egyptian Hieroglyphs Segmentation with Convolutional Neural Networks“. Algorithms 16, Nr. 2 (01.02.2023): 79. http://dx.doi.org/10.3390/a16020079.
Der volle Inhalt der QuellePark, Yu-Hyeon, Sung Hoon Choi, Yeon-Ju Kwon, Soon-Wook Kwon, Yang Jae Kang und Tae-Hwan Jun. „Detection of Soybean Insect Pest and a Forecasting Platform Using Deep Learning with Unmanned Ground Vehicles“. Agronomy 13, Nr. 2 (06.02.2023): 477. http://dx.doi.org/10.3390/agronomy13020477.
Der volle Inhalt der QuelleChaiprasittikul, Natkritta, Bhornsawan Thanathornwong, Suchaya Pornprasertsuk-Damrongsri, Somchart Raocharernporn, Somporn Maponthong und Somchai Manopatanakul. „Application of a Multi-Layer Perceptron in Preoperative Screening for Orthognathic Surgery“. Healthcare Informatics Research 29, Nr. 1 (31.01.2023): 16–22. http://dx.doi.org/10.4258/hir.2023.29.1.16.
Der volle Inhalt der Quelle