Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „DIELECTRIC NANOANTENNA“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "DIELECTRIC NANOANTENNA" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "DIELECTRIC NANOANTENNA"
Maksymov, Ivan S., Isabelle Staude, Andrey E. Miroshnichenko und Yuri S. Kivshar. „Optical Yagi-Uda nanoantennas“. Nanophotonics 1, Nr. 1 (01.07.2012): 65–81. http://dx.doi.org/10.1515/nanoph-2012-0005.
Der volle Inhalt der QuelleLv, Jingwei, Debao Wang, Chao Liu, Jianxin Wang, Lin Yang, Wei Liu, Qiang Liu, Haiwei Mu und Paul K. Chu. „Theoretical Analysis of Hybrid Metal–Dielectric Nanoantennas with Plasmonic Fano Resonance for Optical Sensing“. Coatings 12, Nr. 9 (26.08.2022): 1248. http://dx.doi.org/10.3390/coatings12091248.
Der volle Inhalt der QuelleErgul, O., G. Isiklar, I. C. Cetin und M. Algun. „Design and Analysis of Nanoantenna Arrays for Imaging and Sensing Applications at Optical Frequencies“. Advanced Electromagnetics 8, Nr. 2 (25.02.2019): 18–27. http://dx.doi.org/10.7716/aem.v8i2.1010.
Der volle Inhalt der QuelleAgrahari, Rajan, und Hadi K. Shamkhi. „Highly Directive All-Dielectric Nanoantenna“. Journal of Physics: Conference Series 2015, Nr. 1 (01.11.2021): 012003. http://dx.doi.org/10.1088/1742-6596/2015/1/012003.
Der volle Inhalt der QuelleFujii, Minoru, und Hiroshi Sugimoto. „(Invited, Digital Presentation) Enhancement of Magnetic Dipole Transition of Molecules By Silicon Nanoparticle Nanoantenna“. ECS Meeting Abstracts MA2022-01, Nr. 20 (07.07.2022): 1081. http://dx.doi.org/10.1149/ma2022-01201081mtgabs.
Der volle Inhalt der QuelleYang, Guoce, Yijie Niu, Hong Wei, Benfeng Bai und Hong-Bo Sun. „Greatly amplified spontaneous emission of colloidal quantum dots mediated by a dielectric-plasmonic hybrid nanoantenna“. Nanophotonics 8, Nr. 12 (13.11.2019): 2313–19. http://dx.doi.org/10.1515/nanoph-2019-0332.
Der volle Inhalt der QuelleUllah, Kaleem, Braulio Garcia-Camara, Muhammad Habib, Xuefeng Liu, Alex Krasnok, Sergey Lepeshov, Jingjing Hao, Juan Liu und N. P. Yadav. „Chiral all-dielectric trimer nanoantenna“. Journal of Quantitative Spectroscopy and Radiative Transfer 208 (März 2018): 71–77. http://dx.doi.org/10.1016/j.jqsrt.2018.01.015.
Der volle Inhalt der QuelleMu, Haiwei, Yu Wang, Jingwei Lv, Zao Yi, Lin Yang, Paul K. Chu und Chao Liu. „Electric field enhancement by a hybrid dielectric-metal nanoantenna with a toroidal dipole contribution“. Applied Optics 61, Nr. 24 (15.08.2022): 7125. http://dx.doi.org/10.1364/ao.466124.
Der volle Inhalt der QuelleMarques Lameirinhas, Ricardo A., João Paulo N. Torres und António Baptista. „A Sensor Based on Nanoantennas“. Applied Sciences 10, Nr. 19 (29.09.2020): 6837. http://dx.doi.org/10.3390/app10196837.
Der volle Inhalt der QuelleZhang, Tianyue, Jian Xu, Zi-Lan Deng, Dejiao Hu, Fei Qin und Xiangping Li. „Unidirectional Enhanced Dipolar Emission with an Individual Dielectric Nanoantenna“. Nanomaterials 9, Nr. 4 (18.04.2019): 629. http://dx.doi.org/10.3390/nano9040629.
Der volle Inhalt der QuelleDissertationen zum Thema "DIELECTRIC NANOANTENNA"
Peter, Manuel [Verfasser]. „Active Plasmonic and Dielectric Nanoantennas / Manuel Peter“. Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1149154187/34.
Der volle Inhalt der QuelleDEVI, INDER. „DESIGN AND ANALYSIS OF ALL OPTICAL DIELECTRIC CYLINDRICAL NANOANTENNAS“. Thesis, 2016. http://dspace.dtu.ac.in:8080/jspui/handle/repository/15240.
Der volle Inhalt der QuelleZou, Longfang. „Dielectric resonator antennas : from multifunction microwave devices to optical nano-antennas“. Thesis, 2013. http://hdl.handle.net/2440/82146.
Der volle Inhalt der QuelleThesis (Ph.D.)--University of Adelaide, School of Electrical & Electronic Engineering, 2013.
Lechago, Buendía Sergio. „All-dielectric nanoantennas enabling on-chip wireless silicon photonics“. Doctoral thesis, 2019. http://hdl.handle.net/10251/133074.
Der volle Inhalt der Quelle[CAT] La revolució habilitada per les aplicacions fotòniques durant les últimes dècades ha deixat la seua empremta en la societat actual tal com la coneixem. Exemples clars d'aquest impacte estan patents en, per exemple, l'enorme tràfic de dades generat per l'ús d'Internet o d'algunes tècniques biomèdiques amb fins diagnòstics o quirúrgics, que no es podrien entendre sense l'incessant desenvolupament dels sistemes òptics. La necessitat de combinar i miniaturitzar aquests sistemes per produir funcionalitats més avançades va donar lloc al naixement dels circuits fotònics integrats (PICs), que és on aquesta tesi va començar a prendre forma. En aquest sentit, observem limitacions en termes de flexibilitat o reconfigurabilitat inherents a la naturalesa guiada de la majoria dels PICs realitzats fins al moment. En el circuits plasmònics, tenim a mès les limitacions de les elevades pèrdues que les guies metàl·liques tenen a altes freqüències. La inclusió d'estructures sense fil (basades principalment en l'ús de nanoantenes plasmòniques) a la capa fotònica va sorgir per mitigar aquestes pèrdues, obrint també noves vies d'investigació. No obstant això, aquests dispositius encara presentaven rendiments molt pobres com a elements purament radiants en el règim de camp llunyà. Per superar aquestes deficiències, en aquest treball, vam introduir un enfocament innovador en el desenvolupament de dispositius sense fil a la nanoescala, que va donar forma al que anomenem on-chip wireless silicon photonics. Aquest nou concepte està basat en l'ús de nanoantenes de silici compatibles amb processos CMOS, que constitueixen les estructures clau que possibiliten un vast catàleg d'aplicacions en xarxes fotòniques de comunicació o en sensors ultra-integrats, així com per a la interconnexió de sistemes dieléctrics-plasmònics avançats. En l'àmbit de les comunicacions, gràcies a les senzilles regles de disseny per adaptar la directivitat de les antenes a les diverses aplicacions, vam poder demostrar per primera vegada transmissions de dades on-chip (mitjançant l'ús d'antenes altament directives) en xarxes reconfigurables o desenvolupar un dispositiu per generar a voluntat focus electromagnètics de manera dinàmica en espais bidimensionals (gràcies a antenes amb una directivitat més baixa). D'altra banda, en el camp del biosensing, vam dissenyar i fabricar un sensor lab-on-a-chip per a la classificació de micropartícules, basat en l'emprament d'antenes dielèctriques amb un rendiment a l'avantguarda dels millors dispositius de l'estat de l'art, que inclou el subsistema òptic més compacte demostrat fins al moment. Finalment, vam ser capaços de connectar experimentalment i de manera eficient antenes basades en silici amb estructures plasmònics per al desenvolupament de noves aplicacions en la nanoescala, unint els avantatges del on-chip wireless silicon photonics per a comunicacions en xip, conformació dinàmica de feixos o biosensat amb els avantatges de la plasmònica per a la manipulació e interacció amb llum.
[EN] The revolution sparked by photonic applications during the last decades has made its mark in society, as we currently know it. Clear examples of this impact are patent in, for instance, the colossal worldwide data traffic generated by the use of the Internet or the widespread utilization of some biomedical techniques for diagnostic or surgical purposes, which could not be understood without the ceaseless development of optical systems. The necessity of combining and miniaturizing these systems to enable advanced functionalities gave birth to the development of photonic integrated circuits (PICs), which is the main framework within which this thesis began to take shape. Along these lines, we noticed restricted limitations in terms of flexibility or reconfigurability inherent to the wired-based nature of most PIC implementations carried out so far. In the case of plasmonic circuitry, there are additional shortcomings arising from the prohibitive losses of metallic waveguides at very high frequencies. The inclusion of wireless structures (mostly based on plasmonic nanoantennas) at the photonic layer emerged to mitigate these limiting losses, also opening new research avenues. However, these devices still presented poor performances as purely radiating elements in the far-field regime. In order to overcome these lacks, in this work, we introduced a novel version to wireless approaches at the nanoscale in what we called on-chip wireless silicon photonics. This new concept was built upon the use of CMOS-compatible silicon-based nanoantennas, which constitute the key enabling structures of a diverse catalogue of applications in photonic communication networks or ultra-integrated sensors as well as for interfacing advanced dielectric-plasmonic systems. In the scope of communications, thanks to the easiness to tailor the antenna directivity, we were able to experimentally demonstrate on-chip data transmission flows in reconfigurable networks for the first time (by using highly directive antennas) or to develop dynamically tailor-made interference patterns to create focused spots at will on a 2D arrangement (enabled by antennas with a lower directivity). On the other hand, in the field of biosensing, we experimentally implemented a dielectric antenna-based lab-on-a-chip device for microparticle classification with state-of-the-art performance, which included the most compact optical subsystem demonstrated so far. Finally, we were able to efficiently interface silicon-based antennas to plasmonic systems to develop new advanced functionalities at the nanoscale, by putting together the advantages of on-chip wireless silicon photonics for on-chip communications, beam-shaping tailoring or lab-on-a-chip sensing with the advantages of plasmonics for light concentration and manipulation.
Lechago Buendía, S. (2019). All-dielectric nanoantennas enabling on-chip wireless silicon photonics [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/133074
TESIS
Buchteile zum Thema "DIELECTRIC NANOANTENNA"
Paniagua-Dominguez, Ramon, Boris Luk'yanchuk und Arseniy I. Kuznetsov. „Control of scattering by isolated dielectric nanoantennas“. In Dielectric Metamaterials, 73–108. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-08-102403-4.00008-6.
Der volle Inhalt der QuelleKrasnok, Alexandr E., Pavel A. Belov, Andrey E. Miroshnichenko, Arseniy I. Kuznetsov, Boris S. Luk'yanchuk und Yuri S. Kivshar. „All-Dielectric Optical Nanoantennas“. In Progress in Compact Antennas. InTech, 2014. http://dx.doi.org/10.5772/58850.
Der volle Inhalt der QuelleCampbell, Sawyer D., Eric B. Whiting, Danny Z. Zhu und Douglas H. Werner. „Inverse-design of plasmonic and dielectric optical nanoantennas“. In Nanoantennas and Plasmonics: Modelling, design and fabrication, 153–87. Institution of Engineering and Technology, 2020. http://dx.doi.org/10.1049/sbew540e_ch5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "DIELECTRIC NANOANTENNA"
Malheiros-Silveira, Gilliard Nardel, und Hugo Enrique Hernandez-Figueroa. „Optical Coupling in Dielectric Resonator Nanoantenna“. In Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jw3a.100.
Der volle Inhalt der QuelleXu, Yue, Tao Dong und Hang Zhao. „A Novel Miniaturized Dielectric Optical Nanoantenna“. In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/acpc.2017.su1g.3.
Der volle Inhalt der QuelleDevi, Inder, Reena ., Yogita Kalra und R. K. Sinha. „Design of tunable cylindrical dielectric nanoantenna“. In SPIE Nanoscience + Engineering, herausgegeben von Stefano Cabrini, Gilles Lérondel, Adam M. Schwartzberg und Taleb Mokari. SPIE, 2016. http://dx.doi.org/10.1117/12.2237849.
Der volle Inhalt der QuelleSethi, Waleed Tariq, Hamsakutty Vettikalladi und Habib Fathallah. „Dielectric resonator nanoantenna at optical frequencies“. In 2015 International Conference on Information and Communication Technology Research (ICTRC). IEEE, 2015. http://dx.doi.org/10.1109/ictrc.2015.7156439.
Der volle Inhalt der QuelleMalheiros-Silveira, Gilliard N., und Hugo E. Hernandez-Figueroa. „Dielectric resonator nanoantenna for optical frequencies“. In 2013 IEEE Photonics Conference (IPC). IEEE, 2013. http://dx.doi.org/10.1109/ipcon.2013.6656480.
Der volle Inhalt der QuelleMurai, Shunsuke, Yuto Inoue, TienYang Lo und Katsuhisa Tanaka. „Dielectric nanoantenna stickers for photoluminescence control“. In Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XXI, herausgegeben von Yu-Jung Lu und Takuo Tanaka. SPIE, 2023. http://dx.doi.org/10.1117/12.2678250.
Der volle Inhalt der QuelleMalheiros-Silveira, Gilliard N., und Hugo E. Hernandez-Figueroa. „Dielectric resonator nanoantenna array for optical frequencies“. In 2013 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2013. http://dx.doi.org/10.1109/aps.2013.6710725.
Der volle Inhalt der QuelleSun, S., R. Li, M. Li, Q. G. Du und P. Bai. „Plasmonic-Dielectric Mushroom Nanoantenna for Fluorescence Enhancement“. In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleopr.2018.th2h.4.
Der volle Inhalt der QuelleBonod, Nicolas, Sebastien Bidault, Geoffrey W. Burr und Mathieu Mivelle. „A Dielectric Magnetic Nanoantenna Designed by Evolutionary Optimization“. In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8872333.
Der volle Inhalt der QuelleMalheiros-Silveira, Gilliard N., Ruth E. Rubio-Noriega und Hugo E. Hernández-Figueroa. „Wireless link evaluation of a dielectric resonator nanoantenna“. In Optical Interconnects XIX, herausgegeben von Henning Schröder und Ray T. Chen. SPIE, 2019. http://dx.doi.org/10.1117/12.2510605.
Der volle Inhalt der Quelle