Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Diffusion equations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Diffusion equations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Diffusion equations"
Slijepčević, Siniša. "Entropy of scalar reaction-diffusion equations." Mathematica Bohemica 139, no. 4 (2014): 597–605. http://dx.doi.org/10.21136/mb.2014.144137.
Der volle Inhalt der QuelleBögelein, Verena, Frank Duzaar, Paolo Marcellini, and Stefano Signoriello. "Nonlocal diffusion equations." Journal of Mathematical Analysis and Applications 432, no. 1 (2015): 398–428. http://dx.doi.org/10.1016/j.jmaa.2015.06.053.
Der volle Inhalt der QuelleSOKOLOV, I. M., and A. V. CHECHKIN. "ANOMALOUS DIFFUSION AND GENERALIZED DIFFUSION EQUATIONS." Fluctuation and Noise Letters 05, no. 02 (2005): L275—L282. http://dx.doi.org/10.1142/s0219477505002653.
Der volle Inhalt der QuelleZubair, Muhammad. "Fractional diffusion equations and anomalous diffusion." Contemporary Physics 59, no. 4 (2018): 406–7. http://dx.doi.org/10.1080/00107514.2018.1515252.
Der volle Inhalt der QuelleGurevich, Pavel, and Sergey Tikhomirov. "Systems of reaction-diffusion equations with spatially distributed hysteresis." Mathematica Bohemica 139, no. 2 (2014): 239–57. http://dx.doi.org/10.21136/mb.2014.143852.
Der volle Inhalt der QuelleFila, Marek, and Ján Filo. "Global behaviour of solutions to some nonlinear diffusion equations." Czechoslovak Mathematical Journal 40, no. 2 (1990): 226–38. http://dx.doi.org/10.21136/cmj.1990.102377.
Der volle Inhalt der QuelleKOLTUNOVA, L. N. "ON AVERAGED DIFFUSION EQUATIONS." Chemical Engineering Communications 114, no. 1 (1992): 1–15. http://dx.doi.org/10.1080/00986449208936013.
Der volle Inhalt der QuelleKern, Peter, Svenja Lage, and Mark M. Meerschaert. "Semi-fractional diffusion equations." Fractional Calculus and Applied Analysis 22, no. 2 (2019): 326–57. http://dx.doi.org/10.1515/fca-2019-0021.
Der volle Inhalt der QuelleWei, G. W. "Generalized reaction–diffusion equations." Chemical Physics Letters 303, no. 5-6 (1999): 531–36. http://dx.doi.org/10.1016/s0009-2614(99)00270-5.
Der volle Inhalt der QuelleFreidlin, Mark. "Coupled Reaction-Diffusion Equations." Annals of Probability 19, no. 1 (1991): 29–57. http://dx.doi.org/10.1214/aop/1176990535.
Der volle Inhalt der QuelleDissertationen zum Thema "Diffusion equations"
Ta, Thi nguyet nga. "Sub-gradient diffusion equations." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0137/document.
Der volle Inhalt der QuelleCoulon, Anne-Charline. "Propagation in reaction-diffusion equations with fractional diffusion." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277576.
Der volle Inhalt der QuellePrehl, Janett. "Diffusion on fractals and space-fractional diffusion equations." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201001068.
Der volle Inhalt der QuelleFei, Ning Fei. "Studies in reaction-diffusion equations." Thesis, Heriot-Watt University, 2003. http://hdl.handle.net/10399/310.
Der volle Inhalt der QuelleGrant, Koryn. "Symmetries and reaction-diffusion equations." Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264601.
Der volle Inhalt der QuelleNinomiya, Hirokazu. "Separatrices of competition-diffusion equations." 京都大学 (Kyoto University), 1995. http://hdl.handle.net/2433/187159.
Der volle Inhalt der QuelleCoulon, Chalmin Anne-Charline. "Fast propagation in reaction-diffusion equations with fractional diffusion." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2427/.
Der volle Inhalt der QuelleKnaub, Karl R. "On the asymptotic behavior of internal layer solutions of advection-diffusion-reaction equations /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6772.
Der volle Inhalt der QuelleCoville, Jerome. "Equations de reaction diffusion non-locale." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00004313.
Der volle Inhalt der QuelleCifani, Simone. "On nonlinear fractional convection - diffusion equations." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15192.
Der volle Inhalt der QuelleBücher zum Thema "Diffusion equations"
Zhuoqun, Wu, ed. Nonlinear diffusion equations. World Scientific, 2001.
Den vollen Inhalt der Quelle findenSeizō, Itō. Diffusion equations. American Mathematical Society, 1992.
Den vollen Inhalt der Quelle findenFavini, Angelo, and Gabriela Marinoschi. Degenerate Nonlinear Diffusion Equations. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28285-0.
Der volle Inhalt der QuelleFavini, Angelo. Degenerate Nonlinear Diffusion Equations. Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenMasao, Nagasawa. Schrödinger equations and diffusion theory. Birkhäuser Verlag, 1993.
Den vollen Inhalt der Quelle findenNagasawa, Masao. Schrödinger Equations and Diffusion Theory. Springer Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-0560-5.
Der volle Inhalt der QuelleNagasawa, Masao. Schrödinger Equations and Diffusion Theory. Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8568-3.
Der volle Inhalt der QuelleLam, King-Yeung, and Yuan Lou. Introduction to Reaction-Diffusion Equations. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20422-7.
Der volle Inhalt der QuelleZhou, Yong. Fractional Diffusion and Wave Equations. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-74031-2.
Der volle Inhalt der QuelleJ, Brown K., Lacey A. A, and Heriot-Watt University. Dept. of Mathematics., eds. Reaction-diffusion equations: The proceedings of a symposium year on reaction-diffusion equations. Clarendon Press, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Diffusion equations"
Linge, Svein, and Hans Petter Langtangen. "Diffusion Equations." In Finite Difference Computing with PDEs. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55456-3_3.
Der volle Inhalt der QuelleShewmon, Paul. "Diffusion Equations." In Diffusion in Solids. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48206-4_1.
Der volle Inhalt der QuelleItô, Seizô. "Diffusion Equations." In Kôsaku Yosida Collected Papers. Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-65859-7_6.
Der volle Inhalt der QuelleKavdia, Mahendra. "Parabolic Differential Equations, Diffusion Equation." In Encyclopedia of Systems Biology. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_273.
Der volle Inhalt der QuelleDagdug, Leonardo, Jason Peña, and Ivan Pompa-García. "Reaction-Diffusion Equations." In Diffusion Under Confinement. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-46475-1_13.
Der volle Inhalt der QuelleStroock, Daniel W., and S. R. Srinivasa Varadhan. "Stochastic Differential Equations." In Multidimensional Diffusion Processes. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-28999-2_6.
Der volle Inhalt der QuelleEidelman, Samuil D., Anatoly N. Kochubei, and Stepan D. Ivasyshen. "Fractional Diffusion Equations." In Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type. Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7844-9_5.
Der volle Inhalt der QuelleJüngel, Ansgar. "Drift-Diffusion Equations." In Transport Equations for Semiconductors. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89526-8_5.
Der volle Inhalt der QuelleMei, Zhen. "Reaction-Diffusion Equations." In Numerical Bifurcation Analysis for Reaction-Diffusion Equations. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04177-2_1.
Der volle Inhalt der QuelleDa Prato, Giuseppe. "Reaction-Diffusion Equations." In Kolmogorov Equations for Stochastic PDEs. Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7909-5_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Diffusion equations"
Hassanpour, H., E. Nadernejad, and H. Miar. "Image enhancement using diffusion equations." In 2007 9th International Symposium on Signal Processing and Its Applications (ISSPA). IEEE, 2007. http://dx.doi.org/10.1109/isspa.2007.4555608.
Der volle Inhalt der QuellePopescu, Emil, Cristiana Dumitrache, Vasile Mioc, and Nedelia A. Popescu. "Fractional diffusion equations and applications." In Flows, Boundaries, Interactions. AIP, 2007. http://dx.doi.org/10.1063/1.2790342.
Der volle Inhalt der QuelleHanyga, Andrzej. "Fractional diffusion and wave equations." In Mathematical Models and Methods for Smart Materials. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776273_0017.
Der volle Inhalt der QuelleQuintana Murillo, Joaqui´n, and Santos Bravo Yuste. "On an Explicit Difference Method for Fractional Diffusion and Diffusion-Wave Equations." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86625.
Der volle Inhalt der QuelleISHII, HITOSHI, and HIROYOSHI MITAKE. "TWO REMARKS ON PERIODIC SOLUTIONS OF HAMILTON-JACOBI EQUATIONS." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0005.
Der volle Inhalt der QuelleSALVARANI, F., and J. L. VÁZQUEZ. "FROM KINETIC SYSTEMS TO DIFFUSION EQUATIONS." In Proceedings of the 12th Conference on WASCOM 2003. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702937_0055.
Der volle Inhalt der QuelleHwang, Jeehyun, Jeongwhan Choi, Hwangyong Choi, Kookjin Lee, Dongeun Lee, and Noseong Park. "Climate Modeling with Neural Diffusion Equations." In 2021 IEEE International Conference on Data Mining (ICDM). IEEE, 2021. http://dx.doi.org/10.1109/icdm51629.2021.00033.
Der volle Inhalt der QuelleKoprucki, Thomas, and Klaus Gartner. "Discretization scheme for drift-diffusion equations with strong diffusion enhancement." In 2012 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2012. http://dx.doi.org/10.1109/nusod.2012.6316560.
Der volle Inhalt der QuellePoláčik, P. "SYMMETRY PROPERTIES OF POSITIVE SOLUTIONS OF PARABOLIC EQUATIONS: A SURVEY." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0009.
Der volle Inhalt der QuelleGEORGI, M., and N. JANGLE. "SPIRAL WAVE MOTION IN REACTION-DIFFUSION SYSTEMS." In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0108.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Diffusion equations"
Wang, Chi-Jen. Analysis of discrete reaction-diffusion equations for autocatalysis and continuum diffusion equations for transport. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1226552.
Der volle Inhalt der QuelleDai, William. Interface-aware Methods for Diffusion Equations. Office of Scientific and Technical Information (OSTI), 2024. http://dx.doi.org/10.2172/2323520.
Der volle Inhalt der QuelleKallianput, G., I. Mitoma, and R. L. Wolpert. Diffusion Equations in Duals of Nuclear Spaces. Defense Technical Information Center, 1988. http://dx.doi.org/10.21236/ada200078.
Der volle Inhalt der QuelleFujisaki, Masatoshi. Normed Bellman Equation with Degenerate Diffusion Coefficients and Its Application to Differential Equations. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada190319.
Der volle Inhalt der QuelleHale, Jack K., and Kunimochi Sakamoto. Shadow Systems and Attractors in Reaction-Diffusion Equations,. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada185804.
Der volle Inhalt der QuelleWenocur, Michael L. Diffusion First Passage Times: Approximations and Related Differential Equations,. Defense Technical Information Center, 1986. http://dx.doi.org/10.21236/ada185592.
Der volle Inhalt der QuelleFields, Mary A. Modeling Large Scale Troop Movement Using Reaction Diffusion Equations. Defense Technical Information Center, 1993. http://dx.doi.org/10.21236/ada270701.
Der volle Inhalt der QuelleHeineike, Benjamin M. Modeling Morphogenesis with Reaction-Diffusion Equations Using Galerkin Spectral Methods. Defense Technical Information Center, 2002. http://dx.doi.org/10.21236/ada403766.
Der volle Inhalt der QuelleAhmed, Hoda F. Gegenbauer Collocation Algorithm for Solving Twodimensional Time-space Fractional Diffusion Equations. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, 2019. http://dx.doi.org/10.7546/crabs.2019.08.04.
Der volle Inhalt der QuelleKnapp, Charles E., and Charles W. Cranfill. Comparison of Numeric to Analytic Solutions for a Class of Nonlinear Diffusion Equations. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/1193616.
Der volle Inhalt der Quelle