Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Dihydrouridine.

Zeitschriftenartikel zum Thema „Dihydrouridine“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Dihydrouridine" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Kasprzak, Joanna M., Anna Czerwoniec, and Janusz M. Bujnicki. "Molecular evolution of dihydrouridine synthases." BMC Bioinformatics 13, no. 1 (2012): 153. http://dx.doi.org/10.1186/1471-2105-13-153.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Byrne, Robert T., Huw T. Jenkins, Daniel T. Peters, et al. "Major reorientation of tRNA substrates defines specificity of dihydrouridine synthases." Proceedings of the National Academy of Sciences 112, no. 19 (2015): 6033–37. http://dx.doi.org/10.1073/pnas.1500161112.

Der volle Inhalt der Quelle
Annotation:
The reduction of specific uridines to dihydrouridine is one of the most common modifications in tRNA. Increased levels of the dihydrouridine modification are associated with cancer. Dihydrouridine synthases (Dus) from different subfamilies selectively reduce distinct uridines, located at spatially unique positions of folded tRNA, into dihydrouridine. Because the catalytic center of all Dus enzymes is conserved, it is unclear how the same protein fold can be reprogrammed to ensure that nucleotides exposed at spatially distinct faces of tRNA can be accommodated in the same active site. We show t
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Whelan, Fiona, Huw T. Jenkins, Samuel C. Griffiths, Robert T. Byrne, Eleanor J. Dodson, and Alfred A. Antson. "From bacterial to human dihydrouridine synthase: automated structure determination." Acta Crystallographica Section D Biological Crystallography 71, no. 7 (2015): 1564–71. http://dx.doi.org/10.1107/s1399004715009220.

Der volle Inhalt der Quelle
Annotation:
The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dixit, Sameer, and Samie R. Jaffrey. "Expanding the epitranscriptome: Dihydrouridine in mRNA." PLOS Biology 20, no. 7 (2022): e3001720. http://dx.doi.org/10.1371/journal.pbio.3001720.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

House, Christopher H., and Stanley L. Miller. "Hydrolysis of Dihydrouridine and Related Compounds." Biochemistry 35, no. 1 (1996): 315–20. http://dx.doi.org/10.1021/bi951577+.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Savage, Dan F., Valérie de Crécy-Lagard, and Anthony C. Bishop. "Molecular determinants of dihydrouridine synthase activity." FEBS Letters 580, no. 22 (2006): 5198–202. http://dx.doi.org/10.1016/j.febslet.2006.08.062.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dyubankova, N., E. Sochacka, K. Kraszewska, B. Nawrot, P. Herdewijn, and E. Lescrinier. "Contribution of dihydrouridine in folding of the D-arm in tRNA." Organic & Biomolecular Chemistry 13, no. 17 (2015): 4960–66. http://dx.doi.org/10.1039/c5ob00164a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Feng, Pengmian, Zhaochun Xu, Hui Yang, Hao Lv, Hui Ding, and Li Liu. "Identification of D Modification Sites by Integrating Heterogeneous Features in Saccharomyces cerevisiae." Molecules 24, no. 3 (2019): 380. http://dx.doi.org/10.3390/molecules24030380.

Der volle Inhalt der Quelle
Annotation:
As an abundant post-transcriptional modification, dihydrouridine (D) has been found in transfer RNA (tRNA) from bacteria, eukaryotes, and archaea. Nonetheless, knowledge of the exact biochemical roles of dihydrouridine in mediating tRNA function is still limited. Accurate identification of the position of D sites is essential for understanding their functions. Therefore, it is desirable to develop novel methods to identify D sites. In this study, an ensemble classifier was proposed for the detection of D modification sites in the Saccharomyces cerevisiae transcriptome by using heterogeneous fe
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Yu, F., Y. Tanaka, K. Yamashita, et al. "Molecular basis of dihydrouridine formation on tRNA." Proceedings of the National Academy of Sciences 108, no. 49 (2011): 19593–98. http://dx.doi.org/10.1073/pnas.1112352108.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bishop, Anthony C., Jimin Xu, Reid C. Johnson, Paul Schimmel, and Valérie de Crécy-Lagard. "Identification of the tRNA-Dihydrouridine Synthase Family." Journal of Biological Chemistry 277, no. 28 (2002): 25090–95. http://dx.doi.org/10.1074/jbc.m203208200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

House, Christopher H., and Stanley L. Miller. "The hydrolysis of dihydrouridine and related compounds." Origins of Life and Evolution of the Biosphere 26, no. 3-5 (1996): 357–58. http://dx.doi.org/10.1007/bf02459807.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Lombard, Murielle, Colbie J. Reed, Ludovic Pecqueur, et al. "Evolutionary Diversity of Dus2 Enzymes Reveals Novel Structural and Functional Features among Members of the RNA Dihydrouridine Synthases Family." Biomolecules 12, no. 12 (2022): 1760. http://dx.doi.org/10.3390/biom12121760.

Der volle Inhalt der Quelle
Annotation:
Dihydrouridine (D) is an abundant modified base found in the tRNAs of most living organisms and was recently detected in eukaryotic mRNAs. This base confers significant conformational plasticity to RNA molecules. The dihydrouridine biosynthetic reaction is catalyzed by a large family of flavoenzymes, the dihydrouridine synthases (Dus). So far, only bacterial Dus enzymes and their complexes with tRNAs have been structurally characterized. Understanding the structure-function relationships of eukaryotic Dus proteins has been hampered by the paucity of structural data. Here, we combined extensive
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Chen, Minghao, Jian Yu, Yoshikazu Tanaka, Miyuki Tanaka, Isao Tanaka, and Min Yao. "Structure of dihydrouridine synthase C (DusC) fromEscherichia coli." Acta Crystallographica Section F Structural Biology and Crystallization Communications 69, no. 8 (2013): 834–38. http://dx.doi.org/10.1107/s1744309113019489.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Dalluge, J. "Conformational flexibility in RNA: the role of dihydrouridine." Nucleic Acids Research 24, no. 6 (1996): 1073–79. http://dx.doi.org/10.1093/nar/24.6.1073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Draycott, Austin, Matthew C. Wang, Diana Martínez Saucedo, Luisa Escobar-Hoyos, and Wendy Gilbert. "Abstract LB299: Dihydrouridine synthase 2 sustains levels of tRNACys and prevents ferroptosis in lung cancer." Cancer Research 84, no. 7_Supplement (2024): LB299. http://dx.doi.org/10.1158/1538-7445.am2024-lb299.

Der volle Inhalt der Quelle
Annotation:
Abstract Dihydrouridine is a universally conserved tRNA modification installed by enzymes that are important for human health. High expression of dihydrouridine synthase 2 (DUS2) predicts poor patient outcomes in lung adenocarcinoma (LUAD) for reasons that are not yet clear. Here, we show in human cells and mouse xenografts that DUS2 suppresses ferroptosis, a metal-dependent non-apoptotic form of cell death that is emerging as a therapeutic target in lung cancer. Elevated DUS2 correlates with resistance to ferroptosis inducers and loss of DUS2 causes increased sensitivity with concomitant accu
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Kaur, J., M. Raj, and B. S. Cooperman. "Fluorescent labeling of tRNA dihydrouridine residues: Mechanism and distribution." RNA 17, no. 7 (2011): 1393–400. http://dx.doi.org/10.1261/rna.2670811.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Luvino, Delphine, Michael Smietana, and Jean-Jacques Vasseur. "Selective fluorescence-based detection of dihydrouridine with boronic acids." Tetrahedron Letters 47, no. 52 (2006): 9253–56. http://dx.doi.org/10.1016/j.tetlet.2006.10.150.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Gong, Nian, Lin Yang, and Xiang-Sheng Chen. "Structural Features and Phylogenetic Implications of Four New Mitogenomes of Caliscelidae (Hemiptera: Fulgoromorpha)." International Journal of Molecular Sciences 22, no. 3 (2021): 1348. http://dx.doi.org/10.3390/ijms22031348.

Der volle Inhalt der Quelle
Annotation:
To explore the differences in mitogenome variation and phylogenetics among lineages of the Hemiptera superfamily Fulgoroidea, we sequenced four new mitogenomes of Caliscelidae: two species of the genus Bambusicaliscelis (Caliscelinae: Caliscelini), namely Bambusicaliscelis flavus and B. fanjingensis, and two species of the genus Youtuus (Ommatidiotinae: Augilini), namely Youtuus strigatus and Y. erythrus. The four mitogenomes were 15,922–16,640 bp (base pair) in length, with 37 mitochondrial genes and an AT-rich region. Gene content and arrangement were similar to those of most other sequenced
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Xing, Feng, Shawna L. Hiley, Timothy R. Hughes, and Eric M. Phizicky. "The Specificities of Four Yeast Dihydrouridine Synthases for Cytoplasmic tRNAs." Journal of Biological Chemistry 279, no. 17 (2004): 17850–60. http://dx.doi.org/10.1074/jbc.m401221200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Bou-Nader, Charles, Damien Brégeon, Ludovic Pecqueur, Marc Fontecave, and Djemel Hamdane. "Electrostatic Potential in the tRNA Binding Evolution of Dihydrouridine Synthases." Biochemistry 57, no. 37 (2018): 5407–14. http://dx.doi.org/10.1021/acs.biochem.8b00584.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Kato, Tatsuya, Yataro Daigo, Satoshi Hayama, et al. "A Novel Human tRNA-Dihydrouridine Synthase Involved in Pulmonary Carcinogenesis." Cancer Research 65, no. 13 (2005): 5638–46. http://dx.doi.org/10.1158/0008-5472.can-05-0600.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

COONEY, MICHAEL G., and PAUL W. DOETSCH. "Molecular modeling Studies of a Deoxyoctanucleotide Containing a Dihydrouridine Lesion." Annals of the New York Academy of Sciences 726, no. 1 DNA Damage (1994): 299–302. http://dx.doi.org/10.1111/j.1749-6632.1994.tb52832.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Jenkins, Huw, Fiona Whelan, Daniel Peters, et al. "Recognition of Specific Uridines in tRNA Substrates by Dihydrouridine Synthases." Biophysical Journal 110, no. 3 (2016): 239a. http://dx.doi.org/10.1016/j.bpj.2015.11.1319.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Goyal, Nainee, Anshuman Chandra, Imteyaz Qamar, and Nagendra Singh. "Structural studies on dihydrouridine synthase A (DusA) from Pseudomonas aeruginosa." International Journal of Biological Macromolecules 132 (July 2019): 254–64. http://dx.doi.org/10.1016/j.ijbiomac.2019.03.209.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Suleman, Muhammad Taseer, Fahad Alturise, Tamim Alkhalifah, and Yaser Daanial Khan. "iDHU-Ensem: Identification of dihydrouridine sites through ensemble learning models." DIGITAL HEALTH 9 (January 2023): 205520762311659. http://dx.doi.org/10.1177/20552076231165963.

Der volle Inhalt der Quelle
Annotation:
Background Dihydrouridine (D) is one of the most significant uridine modifications that have a prominent occurrence in eukaryotes. The folding and conformational flexibility of transfer RNA (tRNA) can be attained through this modification. Objective The modification also triggers lung cancer in humans. The identification of D sites was carried out through conventional laboratory methods; however, those were costly and time-consuming. The readiness of RNA sequences helps in the identification of D sites through computationally intelligent models. However, the most challenging part is turning th
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Noon, Kathleen R., Rebecca Guymon, Pamela F. Crain, et al. "Influence of Temperature on tRNA Modification in Archaea: Methanococcoides burtonii (Optimum Growth Temperature [Topt], 23°C) and Stetteria hydrogenophila (Topt, 95°C)." Journal of Bacteriology 185, no. 18 (2003): 5483–90. http://dx.doi.org/10.1128/jb.185.18.5483-5490.2003.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT We report the first study of tRNA modification in psychrotolerant archaea, specifically in the archaeon Methanococcoides burtonii grown at 4 and 23°C. For comparison, unfractionated tRNA from the archaeal hyperthermophile Stetteria hydrogenophila cultured at 93°C was examined. Analysis of modified nucleosides using liquid chromatography-electrospray ionization mass spectrometry revealed striking differences in levels and identities of tRNA modifications between the two organisms. Although the modification levels in M. burtonii tRNA are the lowest in any organism of which we are aware,
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Hayakawa, Hiroyuki, Hiromichi Tanaka, and Tadashi Miyasaka. "Lithiation of 5,6-dihydrouridine: a new route to 5-substituted uridines." Tetrahedron 41, no. 9 (1985): 1675–83. http://dx.doi.org/10.1016/s0040-4020(01)96481-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Deb, Indrajit, Joanna Sarzynska, Lennart Nilsson, and Ansuman Lahiri. "Rapid communication capturing the destabilizing effect of dihydrouridine through molecular simulations." Biopolymers 101, no. 10 (2014): 985–91. http://dx.doi.org/10.1002/bip.22495.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Depelley, Jean, Robert Granet, Pierre Krausz, Salomon Piekarski, Claudine Bosgiraud, and Sylvie Beaussoleil. "Synthesis and Antiretroviral Evaluation of Various 5-Alkyl-6-AZA-5,6-Dihydrouridine." Nucleosides and Nucleotides 13, no. 4 (1994): 1007–10. http://dx.doi.org/10.1080/15257779408011873.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

XING, FENG, MARK R. MARTZEN, and ERIC M. PHIZICKY. "A conserved family of Saccharomyces cerevisiae synthases effects dihydrouridine modification of tRNA." RNA 8, no. 3 (2002): 370–81. http://dx.doi.org/10.1017/s1355838202029825.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Leon-Lai, Chui Har, Michael J. Gresser, and Alan S. Tracey. "Influence of vanadium(V) complexes on the catalytic activity of ribonuclease A. The role of vanadate complexes as transition state analogues to reactions at phosphate." Canadian Journal of Chemistry 74, no. 1 (1996): 38–48. http://dx.doi.org/10.1139/v96-005.

Der volle Inhalt der Quelle
Annotation:
The interactions of vanadate and its complexes of uridine, 5,6-dihydrouridine, and methyl β-D-ribofuranoside with bovine pancreatic ribonuclease A (RNase A) (EC 3.1.27.5) were studied by 51V NMR spectroscopy and enzyme kinetics. From kinetic studies, it was found that neither inorganic vanadate nor the methyl β-D-ribofuranoside–vanadate complex significantly inhibited the RNase A catalyzed hydrolysis of uridine 2′,3′-cyclic monophosphate. The NMR binding studies were in full agreement with the kinetics studies and showed that neither inorganic vanadate nor the methyl β-D-ribofuranoside–vanadat
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Negishi, Kazuo, and Hikoya Hayatsu. "The Fluorescence Property of Dinucleoside Monophosphates Containing Ethenoadenosine and 5, 6-Dihydrouridine Derivatives." Nucleosides and Nucleotides 13, no. 6-7 (1994): 1551–55. http://dx.doi.org/10.1080/15257779408012170.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Mittelstadt, M., A. Frump, T. Khuu, et al. "Interaction of human tRNA-dihydrouridine synthase-2 with interferon-induced protein kinase PKR." Nucleic Acids Research 36, no. 3 (2007): 998–1008. http://dx.doi.org/10.1093/nar/gkm1129.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Chen, Jan-Kan, Jürgen H. Krauss, Stephen S. Hixson, and Robert A. Zimmermann. "Covalent cross-linking of tRNAGly1 to the ribosomal P site via the dihydrouridine loop." Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 825, no. 2 (1985): 161–68. http://dx.doi.org/10.1016/0167-4781(85)90100-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Basith, Shaherin, and Balachandran Manavalan. "How well does a data-driven prediction method distinguish dihydrouridine from tRNA and mRNA?" Molecular Therapy - Nucleic Acids 31 (March 2023): 744–45. http://dx.doi.org/10.1016/j.omtn.2023.02.026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Giel-Pietraszuk, M., M. Z. Barciszewska, P. Mucha, P. Rekowski, G. Kupryszewski, and J. Barciszewski. "Interaction of HIV Tat model peptides with tRNA and 5S rRNA." Acta Biochimica Polonica 44, no. 3 (1997): 591–600. http://dx.doi.org/10.18388/abp.1997_4407.

Der volle Inhalt der Quelle
Annotation:
New data are presented on the interaction of model synthetic peptides containing an arginine-rich region of human immunodeficiency virus (HIV-Tat), with native RNA molecules: tRNA(Phe) of Saccharomyces cerevisiae and 5S rRNA from Lupinus luteus. Both RNA species form complexes with the Tat1 (GRKKRRQRRRA) and Tat2 (GRKKRRQRRRAPQDSQTHQASLSKQPA) peptides, as shown by electrophoretic gel shift and RNase footprint assays, and CD measurements. The nucleotide sequence UGGG located in the dihydrouridine loop of tRNAPhe as well as in the loop D of 5S rRNA is specifically protected against RNases. Our d
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Finet, Olivier, Carlo Yague-Sanz, Florian Marchand, and Damien Hermand. "The Dihydrouridine landscape from tRNA to mRNA: a perspective on synthesis, structural impact and function." RNA Biology 19, no. 1 (2022): 735–50. http://dx.doi.org/10.1080/15476286.2022.2078094.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Finet, Olivier, Carlo Yague-Sanz, Lara Katharina Krüger, et al. "Transcription-wide mapping of dihydrouridine reveals that mRNA dihydrouridylation is required for meiotic chromosome segregation." Molecular Cell 82, no. 2 (2022): 404–19. http://dx.doi.org/10.1016/j.molcel.2021.11.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Bou-Nader, Charles, Hugo Montémont, Vincent Guérineau, Olivier Jean-Jean, Damien Brégeon, and Djemel Hamdane. "Unveiling structural and functional divergences of bacterial tRNA dihydrouridine synthases: perspectives on the evolution scenario." Nucleic Acids Research 46, no. 3 (2017): 1386–94. http://dx.doi.org/10.1093/nar/gkx1294.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Griffiths, Sam, Robert T. Byrne, Alfred A. Antson, and Fiona Whelan. "Crystallization and preliminary X-ray crystallographic analysis of the catalytic domain of human dihydrouridine synthase." Acta Crystallographica Section F Structural Biology and Crystallization Communications 68, no. 3 (2012): 333–36. http://dx.doi.org/10.1107/s1744309112003831.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Dalluge, J. "Quantitative measurement of dihydrouridine in RNA using isotope dilution liquid chromatography-mass spectrometry (LC/MS)." Nucleic Acids Research 24, no. 16 (1996): 3242–45. http://dx.doi.org/10.1093/nar/24.16.3242.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Reimer, Mark L. J., Karl H. Schram, Katsuyuki Nakano, and Toshio Yasaka. "The identification of 5,6-dihydrouridine in normal human urine by combined gas chromatography/mass spectrometry." Analytical Biochemistry 181, no. 2 (1989): 302–8. http://dx.doi.org/10.1016/0003-2697(89)90247-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

De-Hua, Chen, Lou Ju-Xing, Yang Bing-Hui, Wu Lian-Fen, Chen Fa-Xian, and Liu De-Fu. "Synthesis of nonanucleotide (14-20) of the dihydrouridine (D) loop of yeast alanine transfer RNA." Acta Chimica Sinica 3, no. 1 (1985): 71–81. http://dx.doi.org/10.1002/cjoc.19850030112.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

LU, XIANGYI, QIANWEN ZHANG, and XUN BIAN. "Study on the Chinese Subfamily Anabropsinae (Orthoptera: Anostostomatidae) VI: One new species of Anabropsis (Pteranabropsis) from Yunnan Province." Zootaxa 5178, no. 2 (2022): 178–92. http://dx.doi.org/10.11646/zootaxa.5178.2.4.

Der volle Inhalt der Quelle
Annotation:
This paper is sixth study the Chinese Anabropsinae and reports one new species from Yunnan Province, China, viz. A. (Pteranabropsis) maguanensis sp. nov. (Chinese name: 马关黯螽). Meanwhile, the complete mitochondrical genome of the new species was determined and annotated. The 15, 962 bp circle genome consisted of 13 protein-coding, 22 transfer RNA, 2 ribosomal RNA genes, and an A+T-rich region. It has the typical invertebrate mitochondrial gene arrangement. All protein-coding genes (PCGs) were initiated by typical ATN codon. The nucleotide compositions were significant bias towards AT. All trans
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Zheng, Fang-Yuan, Qiu-Yue Shi, Yao Ling, Jian-Yu Chen, Bo-Fan Zhang, and Xin-Jiang Li. "Comparative Analysis of Mitogenomes among Five Species of Filchnerella (Orthoptera: Acridoidea: Pamphagidae) and Their Phylogenetic and Taxonomic Implications." Insects 12, no. 7 (2021): 605. http://dx.doi.org/10.3390/insects12070605.

Der volle Inhalt der Quelle
Annotation:
Mitogenomes have been widely used for exploring phylogenetic analysis and taxonomic diagnosis. In this study, the complete mitogenomes of five species of Filchnerella were sequenced, annotated and analyzed. Then, combined with other seven mitogenomes of Filchnerella and four of Pamphagidae, the phylogenetic relationships were reconstructed by maximum likelihood (ML) and Bayesian (BI) methods based on PCGs+rRNAs. The sizes of the five complete mitogenomes are Filchnerella sunanensis 15,656 bp, Filchnerella amplivertica 15,657 bp, Filchnerella nigritibia 15,661 bp, Filchnerella pamphagoides 15,6
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Liu, Ning, Hao Wang, Lijun Fang, and Yalin Zhang. "Mitogenome of the Doleschallia bisaltide and Phylogenetic Analysis of Nymphalinae (Lepidoptera, Nymphalidae)." Diversity 15, no. 4 (2023): 558. http://dx.doi.org/10.3390/d15040558.

Der volle Inhalt der Quelle
Annotation:
The complete mitogenome of Doleschallia bisaltide was sequenced with a size of 16,389 bp. Gene orientation and arrangement in the newly sequenced mitogenome are the same as other mitogenomes in Lepidoptera. Except for trnS1(AGN), which lacks the dihydrouridine (DHC) arm, the other 21 tRNA genes all contain a typical cloverleaf structure. Ka/Ks ratio analysis of 13 protein-coding genes (PCGs) from 23 Nymphalinae species indicates that the evolutionary rate of COX1 was slowest, while that of ATP8, ND5, and ND6 was substantially high. Phylogenetic analysis revealed that Nymphalinae and Kallimini
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Yu, Futao, Yoshikazu Tanaka, Shiho Yamamoto, et al. "Crystallization and preliminary X-ray crystallographic analysis of dihydrouridine synthase fromThermus thermophilusand its complex with tRNA." Acta Crystallographica Section F Structural Biology and Crystallization Communications 67, no. 6 (2011): 685–88. http://dx.doi.org/10.1107/s1744309111012486.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Rider, Lance W., Mette B. Ottosen, Samuel G. Gattis, and Bruce A. Palfey. "Mechanism of Dihydrouridine Synthase 2 from Yeast and the Importance of Modifications for Efficient tRNA Reduction." Journal of Biological Chemistry 284, no. 16 (2009): 10324–33. http://dx.doi.org/10.1074/jbc.m806137200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Suleman, Muhammad Taseer, Tamim Alkhalifah, Fahad Alturise, and Yaser Daanial Khan. "DHU-Pred: accurate prediction of dihydrouridine sites using position and composition variant features on diverse classifiers." PeerJ 10 (October 27, 2022): e14104. http://dx.doi.org/10.7717/peerj.14104.

Der volle Inhalt der Quelle
Annotation:
Background Dihydrouridine (D) is a modified transfer RNA post-transcriptional modification (PTM) that occurs abundantly in bacteria, eukaryotes, and archaea. The D modification assists in the stability and conformational flexibility of tRNA. The D modification is also responsible for pulmonary carcinogenesis in humans. Objective For the detection of D sites, mass spectrometry and site-directed mutagenesis have been developed. However, both are labor-intensive and time-consuming methods. The availability of sequence data has provided the opportunity to build computational models for enhancing t
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Buskiewicz, Iwona, Malgorzata Giel-Pietraszuk, Piotr Mucha, Piotr Rekowski, Gotfryd Kupryszewski, and Miroslawa Z. Barciszewska. "Interaction of HIV Tat Peptides With tRNAPhe from Yeast." Collection of Czechoslovak Chemical Communications 63, no. 6 (1998): 842–50. http://dx.doi.org/10.1135/cccc19980842.

Der volle Inhalt der Quelle
Annotation:
We present data on the interaction of arginine-rich peptides of human immunodeficiency virus (HIV-Tat) with tRNAPhe of Saccharomyces cerevisiae. We have found that tRNA forms complexes with the Tat1 peptide of amino acid sequence GRKKRRQRRRA and its mutants where R is replaced by D-arginine, citrulline or ornithine. The structure of tRNA-Tat1 complex was probed by specific RNases digestions and Pb2+-induced cleavage of phosphodiester bond of guanosine. The nucleotide sequence UGGG located in the dihydrouridine loop of tRNAPhe binds to Tat peptide and therefore is specifically protected against
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!