Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „DTU PV POWER PLANT“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "DTU PV POWER PLANT" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "DTU PV POWER PLANT"
Abdul Kadir, Aida Fazliana, Hanisah Mupangat, Dalila Mat Said und Zulhani Rasin. „REACTIVE POWER ANALYSIS AT SOLAR POWER PLANT“. Jurnal Teknologi 83, Nr. 2 (02.02.2021): 47–55. http://dx.doi.org/10.11113/jurnalteknologi.v83.15104.
Der volle Inhalt der QuelleChen, Nuofu, Xiulan Zhang, Yiming Bai und Han Zhang. „Environmental Friendly PV Power Plant“. Energy Procedia 16 (2012): 32–37. http://dx.doi.org/10.1016/j.egypro.2012.01.007.
Der volle Inhalt der QuellePelin, Denis, Matej Žnidarec, Damir Šljivac und Andrej Brandis. „Fast Power Emulation Approach to the Operation of Photovoltaic Power Plants Made of Different Module Technologies“. Energies 13, Nr. 22 (15.11.2020): 5957. http://dx.doi.org/10.3390/en13225957.
Der volle Inhalt der QuelleJing, Shi, Wang Zhimin, Huang Zhonghua und Qi Yanshou. „Analysis of harmonic resonance mechanism of PV power plant“. E3S Web of Conferences 107 (2019): 02002. http://dx.doi.org/10.1051/e3sconf/201910702002.
Der volle Inhalt der QuelleLiang, Hai Feng, Hai Hong Wang und Zi Xing Liu. „Study on the Output Power of the PV Power Plant Model Based on ANFIS“. Advanced Materials Research 724-725 (August 2013): 190–94. http://dx.doi.org/10.4028/www.scientific.net/amr.724-725.190.
Der volle Inhalt der QuelleAlhmoud, Lina. „Why Does the PV Solar Power Plant Operate Ineffectively?“ Energies 16, Nr. 10 (13.05.2023): 4074. http://dx.doi.org/10.3390/en16104074.
Der volle Inhalt der QuelleDelfanti, Maurizio, Davide Falabretti und Marco Merlo. „Energy storage for PV power plant dispatching“. Renewable Energy 80 (August 2015): 61–72. http://dx.doi.org/10.1016/j.renene.2015.01.047.
Der volle Inhalt der QuelleVenkatesh, V., D. Vamsi Krishna, K. V. Kalyani und Ashutosh Saxena. „ADVANCED APPROACH IN SOLAR PV PLANT PROTECTION SYSTEM“. International Journal of Engineering Applied Sciences and Technology 6, Nr. 10 (01.02.2022): 295–99. http://dx.doi.org/10.33564/ijeast.2022.v06i10.039.
Der volle Inhalt der QuelleVaskov, A. G., N. Y. Mozder und A. F. Narynbaev. „Modelling of Solar-Diesel Hybrid Power Plant“. IOP Conference Series: Materials Science and Engineering 1211, Nr. 1 (01.01.2022): 012011. http://dx.doi.org/10.1088/1757-899x/1211/1/012011.
Der volle Inhalt der QuelleHaji, AHMED, und Mehdi F. Bonneya. „Assessment of Power Quality for Large Scale Utility Grid-Connected Solar Power Plant Integrated System“. Journal of Techniques 3, Nr. 3 (29.09.2021): 20–30. http://dx.doi.org/10.51173/jt.v3i3.336.
Der volle Inhalt der QuelleDissertationen zum Thema "DTU PV POWER PLANT"
Perez, de Larraya Espinosa Mikel. „Photovoltaic Power Plant Aging“. Thesis, Högskolan i Gävle, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-33252.
Der volle Inhalt der QuellePrévost, Chloé. „Hybrid PV-Biomass Power Plant design for an Indonesian village“. Thesis, KTH, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232474.
Der volle Inhalt der QuelleDenna magisteruppsats undersöker en konstruktion av ett kraftverk för en by i Indonesien som förnärvarande saknar elförsörjning. Konstruktionen görs med hjälp av fotovoltaik-förgasnings-batterier.Syftet med studien är att bedöma hybridkraftverks förmåga att utnyttja lokala naturresurser och om de ärkapabla att tillgodose byns behov. Därför analyseras byns situation och presenteras med en representativbelastningskurva. Förbrukningen av hela byn, det vill säga 3000 hushåll som försörjer sig huvudsakligenvia fiske, uppskattas till 13,3 MWh/dag för kraftverks år 10. En lokal undersökning tydliggör trehuvudproblem: avskogning, brist på drickbart vatten och brist på möjlighet att förvara mat. Projektetsyftar inte bara till att ge tillgång till el utan också till att tillgodose andra lokala behov. Därför används ettintegrerat och innovativt tillvägagångssätt: kylning, is och dricksvatten produceras; belastningsutjämningtillämpas. En modell utvecklas för att bestämma optimal dimensionering som fokuserar påförgasningskraftverkets drift och tekniska begränsningar. Därutöver utförs simuleringar. Bästa scenariouppstår när förgasningskraftverket körs vid halv belastning under dagen medan all tillgänglig solkraftutnyttjas, eftersom kraftproduktionen är jämn och peaken under dagen är begränsad samtenergiförbrukningen av sol/biomassa är balanserad. Den optimala konfigurationen är för respektive PV-,förgasnings- och batteris kapaciteter 1600 kWpeak, 450 kW och 1274 kWh. Det definieras som optimaltbaserat på tre huvudkriterier som bedömer kraftverkets överkomlighet, tillförlitlighet och miljöhållbarhet.LCOE (Levelized Cost of Energy) visar att det är det billigaste jämfört med de andra simuleringarna på141 $/MWh. Andelen blackout uppfyller 5 %-målet och plantagen har en rimlig storlek under 50 hektar.Slutligen jämförs den optimala konfigurationen med andra hybridkraftverk som båda är dyrare: PVbatterikraftverkmed en LCOE på 286$/MWh och PV-genset-batterikraftverk med en LCOE på157$/MWh.
Alsulaiman, Mohamad, und Najmeh Mohammadi. „Optimal Pitch Distance and Tilt Angleof PV Power Plant for Different Climate“. Thesis, Högskolan Dalarna, Energiteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:du-35528.
Der volle Inhalt der QuelleMthwecu, Sabatha. „Modelling and macroeconomic analysis of a Solar PV/diesel hybrid power plant“. Master's thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/13729.
Der volle Inhalt der QuelleKroutil, Roman. „Komplexní provozní diagnostika FVE-T14 - opatření pro optimalizaci provozu“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242083.
Der volle Inhalt der QuelleCompadre, Senar David. „Performance evaluation of a rooftop solar photovoltaic power plant in the Gävle Arenaby (Gävle, Sweden): Installation testing“. Thesis, Högskolan i Gävle, Energisystem, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-26931.
Der volle Inhalt der QuelleZeman, Daniel. „Návrh technického provedení FVE včetně systému řízení pro komerční objekt v souladu s platnými pravidly pro program ÚSPORY ENERGIE - FVE“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-377121.
Der volle Inhalt der QuelleBartel, Kyle. „Allocating Optimal Grid-Connected Solar Photovoltaic Power Plant Sites : GIS-Based Multi-Criteria Modeling of Solar PV Site Selection in the Southern Thompson-Okanagan Region, British Columbia, Canada“. Thesis, Högskolan i Gävle, Akademin för teknik och miljö, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-15859.
Der volle Inhalt der QuelleSilva, Vinícius Oliveira da. „Estudo e modelagem da arquitetura modular de uma usina solar fotovoltaica arrefecida com protótipo de verificação“. Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/3/3143/tde-22072016-163255/.
Der volle Inhalt der QuelleIn this work we use a verification prototype to model the architecture of a solar photovoltaic power plant equipped with a cooling system. The power plant we model is called UFVa. The methodology is based on the measurement, verification, and data analysis of temperature, electricity generation, test strings (cooled) and comparison strings (not cooled), along with a study of the water feeding behavior of the cooling system, and the impact of climatic conditions in the UFVa prototype operation. By analyzing the data we observed that, for the period between 09:00am and 5:30pm, the PV modules of the test string operate at temperatures below those of the PV modules of the comparison string. During the tests, in which the temperature of the PV modules of the comparison string operated above 55.0°C, the average and the maximum temperatures recorded in the PV modules of the testing string lied below 37.0°C, operating below the NOCT. Regarding the generation of electricity, the test string generated 3.0 kWh/day more than the comparison string. Hence, the cooling system decreases the operating temperature of the PV modules, particularly during the maximum power generation period which is from 11am to 3pm. This leads to efficiency average gains of up to 5.9% in the generation of electricity, 10.3% in the power, and 5.3% in the PR and PF.
Petrov, Roman. „Vývoj komplexního simulátoru slunečního záření a jeho spolupráce s FV modulem“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-377099.
Der volle Inhalt der QuelleBücher zum Thema "DTU PV POWER PLANT"
RIZVI, Sahnawaz, und Samsam MALLICK. METHOD STATEMENT and RISK ASSESSMENT for MODULE INTERCONNECTION WORKS in PV SOLAR POWER PLANT. Independently Published, 2018.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "DTU PV POWER PLANT"
Ghosal, Manoj Kumar. „Decentralized Rooftop Solar Photovoltaic (PV) Power Plant“. In Entrepreneurship in Renewable Energy Technologies, 143–94. London: CRC Press, 2022. http://dx.doi.org/10.4324/9781003347316-3.
Der volle Inhalt der QuelleChianese, D., M. Camani, P. Ceppi und D. Iacobucci. „TISO: 4 kW Experimental Amorphous Silicon PV Power Plant“. In Tenth E.C. Photovoltaic Solar Energy Conference, 755–58. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_194.
Der volle Inhalt der QuelleBhattacharjee, Subhadeep, und Anindita Dey. „Economic Analysis of a Biomass/PV/Diesel Autonomous Power Plant“. In Eco-friendly Computing and Communication Systems, 62–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32112-2_8.
Der volle Inhalt der QuelleKadri, Sani Moussa, Brayima Dakyo, Mamadou Baïlo Camara und Yrébégnan Moussa Soro. „Behavioural Modelling of Multi-MW Hybrid PV/Diesel Modular Power Plant“. In Lecture Notes in Electrical Engineering, 321–34. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-24837-5_24.
Der volle Inhalt der QuelleAji, Prasetyo, Kazumasa Wakamori und Hiroshi Mineno. „Short-Term Solar Power Forecasting Using SVR on Hybrid PV Power Plant in Indonesia“. In Advances in Intelligent Networking and Collaborative Systems, 235–46. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29035-1_23.
Der volle Inhalt der QuelleLaukamp, H., P. Braun und S. Ayyash. „Experiences with a PV Power Plant for a Remote Greenhouse Cooling System“. In Tenth E.C. Photovoltaic Solar Energy Conference, 858–61. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_219.
Der volle Inhalt der QuelleHe, Hui, Ran Hu, Ying Zhang, Runhai Jiao und Honglu Zhu. „Hourly Day-Ahead Power Forecasting for PV Plant Based on Bidirectional LSTM“. In High-Performance Computing Applications in Numerical Simulation and Edge Computing, 208–22. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9987-0_18.
Der volle Inhalt der QuelleBono, Andrea, und Martino Marini. „Renewable power sources in coastal areas. A viability assessment in the scope of needs and regulations“. In Proceedings e report, 645–55. Florence: Firenze University Press, 2020. http://dx.doi.org/10.36253/978-88-5518-147-1.64.
Der volle Inhalt der QuelleSławomir, Kurpaska, Knaga Jarosław, Bernacik Robert und Nęcka Krzysztof. „Modelling of PV Power Station Exploitation Process, Supporting Wastewater Treatment Plant Energetic System“. In Springer Proceedings in Energy, 529–39. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72371-6_52.
Der volle Inhalt der QuelleRana, T. K., und S. Chakraborty. „Micro-grid for Village Empowerment Using Solar PV-Operated Micro-hydel Power Plant“. In Lecture Notes in Electrical Engineering, 191–202. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4286-7_19.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "DTU PV POWER PLANT"
Jasinski, Michal, Zbigniew Leonowicz, Arsalan Najafi, Tomasz Sikorski und Jaroslaw Szymanda. „Power quality assessment of PV power plant“. In 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). IEEE, 2021. http://dx.doi.org/10.1109/eeeic/icpseurope51590.2021.9584734.
Der volle Inhalt der QuelleKapros, Z. „The Reference PV Power Plant-Based Method“. In ISES Solar World Congress 2015. Freiburg, Germany: International Solar Energy Society, 2016. http://dx.doi.org/10.18086/swc.2015.05.25.
Der volle Inhalt der QuelleMoaveni, Houtan, David K. Click, Richard H. Meeker, Robert M. Reedy und Anthony Pappalardo. „Quantifying solar power variability for a large central PV plant and small distributed PV plant“. In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, 2013. http://dx.doi.org/10.1109/pvsc.2013.6744303.
Der volle Inhalt der QuelleClark, K., R. A. Walling und N. W. Miller. „Solar photovoltaic (PV) plant models in PSLF“. In 2011 IEEE Power & Energy Society General Meeting. IEEE, 2011. http://dx.doi.org/10.1109/pes.2011.6039117.
Der volle Inhalt der QuelleCarvajal, Javier López, Jose M. Barea, Jose Barragan und Carlos Ortega. „PV integration into a CSP plant“. In SOLARPACES 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems. Author(s), 2017. http://dx.doi.org/10.1063/1.4984482.
Der volle Inhalt der QuelleDolara, A., R. Faranda, S. Leva, M. Mussetta und E. Ogliari. „The optimum PV plant of an inverter“. In 2013 International Conference on Clean Electrical Power (ICCEP). IEEE, 2013. http://dx.doi.org/10.1109/iccep.2013.6586966.
Der volle Inhalt der QuelleGostein, Michael, Bodo Littmann, J. Riley Caron und Lawrence Dunn. „Comparing PV power plant soiling measurements extracted from PV module irradiance and power measurements“. In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, 2013. http://dx.doi.org/10.1109/pvsc.2013.6745094.
Der volle Inhalt der QuelleSanchez, Borja Cortes, Michal Vary, Milan Perny, Frantisek Janicek, Vladimir Saly und Juraj Packa. „Prediction and production of small PV power plant“. In 2017 18th International Scientific Conference on Electric Power Engineering (EPE). IEEE, 2017. http://dx.doi.org/10.1109/epe.2017.7967276.
Der volle Inhalt der QuelleRemon, Daniel, Antoni M. Cantarellas, Mohamed Atef Abbas Elsaharty, Cosmin Koch-Ciobotaru und Pedro Rodriguez. „Equivalent model of a synchronous PV power plant“. In 2015 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2015. http://dx.doi.org/10.1109/ecce.2015.7309668.
Der volle Inhalt der QuelleBegum, Shahida, Reshma Banu, G. F. Ali Ahammed, B. D. Parameshachari und Rajashekarappa. „Performance degradation issues of PV solar power plant“. In 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT). IEEE, 2017. http://dx.doi.org/10.1109/iceeccot.2017.8284518.
Der volle Inhalt der Quelle