Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Dynamic link networks“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dynamic link networks" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Dynamic link networks"
Latif, Atefeh, Alireza Hedayati und Vahe Aghazarian. „Improving Link Prediction in Dynamic Co-authorship Social Networks“. International Academic Journal of Science and Engineering 05, Nr. 01 (01.06.2018): 222–40. http://dx.doi.org/10.9756/iajse/v5i1/1810020.
Der volle Inhalt der QuelleChoudhury, Nazim. „Community-Aware Evolution Similarity for Link Prediction in Dynamic Social Networks“. Mathematics 12, Nr. 2 (15.01.2024): 285. http://dx.doi.org/10.3390/math12020285.
Der volle Inhalt der QuelleSun, Mengdi, und Minghu Tang. „A Review of Link Prediction Algorithms in Dynamic Networks“. Mathematics 13, Nr. 5 (28.02.2025): 807. https://doi.org/10.3390/math13050807.
Der volle Inhalt der QuelleSheng-Guo Wang, Sheng-Guo Wang, Yong-Gang Liu Sheng-Guo Wang und Tian-Wei Bai Yong-Gang Liu. „Dynamic Node Link Model of Hierarchical Edge Computing“. 電腦學刊 32, Nr. 5 (Oktober 2021): 222–32. http://dx.doi.org/10.53106/199115992021103205019.
Der volle Inhalt der QuelleChoudhury, Nazim, und Shahadat Uddin. „Evolutionary Features for Dynamic Link Prediction in Social Networks“. Applied Sciences 13, Nr. 5 (24.02.2023): 2913. http://dx.doi.org/10.3390/app13052913.
Der volle Inhalt der QuelleSafdari, Hadiseh, Martina Contisciani und Caterina De Bacco. „Reciprocity, community detection, and link prediction in dynamic networks“. Journal of Physics: Complexity 3, Nr. 1 (28.02.2022): 015010. http://dx.doi.org/10.1088/2632-072x/ac52e6.
Der volle Inhalt der QuelleLi, Huikang, Yi Gao, Wei Dong und Chun Chen. „Preferential Link Tomography in Dynamic Networks“. IEEE/ACM Transactions on Networking 27, Nr. 5 (Oktober 2019): 1801–14. http://dx.doi.org/10.1109/tnet.2019.2931047.
Der volle Inhalt der QuelleSong, Y. M., C. Zhang und Y. Q. Yu. „Neural Networks Based Active Vibration Control of Flexible Linkage Mechanisms“. Journal of Mechanical Design 123, Nr. 2 (01.05.2000): 266–71. http://dx.doi.org/10.1115/1.1348269.
Der volle Inhalt der QuelleKiss, Istvan Z., Luc Berthouze, Timothy J. Taylor und Péter L. Simon. „Modelling approaches for simple dynamic networks and applications to disease transmission models“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, Nr. 2141 (18.01.2012): 1332–55. http://dx.doi.org/10.1098/rspa.2011.0349.
Der volle Inhalt der QuelleChen, Lei, Jing Zhang und Li-Jun Cai. „Overlapping community detection based on link graph using distance dynamics“. International Journal of Modern Physics B 32, Nr. 03 (22.01.2018): 1850015. http://dx.doi.org/10.1142/s0217979218500157.
Der volle Inhalt der QuelleDissertationen zum Thema "Dynamic link networks"
Petersen, Erick. „Dynamic link networks : Emulation and validation“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAS028.
Der volle Inhalt der QuelleAs the demand for interactive services, multimedia, and network capabilities grows in modern networks, novel software and/or hardware components should be incorporated. As a consequence, the assessment and validation process of these newly developed solutions is critical to determining whether they perform well, are reliable, and are robust before being deployed in a real network.Network emulation is increasingly used to replicate real-world network behavior at low infrastructure costs and with a higher level of realism than simulations. This approach allows for continuous testing of the final solution without requiring changes after deployment. However, emulating networks with link parameters that may change over time due to internal and external factors, as in satellite communications, complicates the emulation architecture, making thorough testing under various conditions a challenging task. Moreover, ensuring that the emulator is adequate for the given context and is designed correctly is crucial for obtaining reliable results. This includes verifying that the emulator can accurately replicate the specific network conditions and scenarios for which it is intended.In this thesis, we address the challenges of dynamic-link network emulation and validation. We propose a model for dynamic-link networks and their parameters, considering the limitations in describing and executing dynamic behavior. We have developed an emulation platform that incorporates our proposed model and allows to test and evaluate various network scenarios in a controlled environment. To ensure proper emulation and bridge the gap between emulation and real-world scenarios, both model checking and run-time verification have been proposed. Additionally, the emulation execution has been verified by extracting a dataset of network parameters and checking it respects certain properties of interest over time. Finally, we have introduced a novel method using the Cellular Automaton model to accurately simulate the evolution of network parameters while ensuring that certain properties are maintained throughout this evolution, thereby potentially fast transfer to an emulation configuration where network parameters reach critical values
Stapelberg, Dieter. „Link failure recovery among dynamic routes in telecommunication networks“. Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2591.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Since 2002 data tra c has overtaken voice tra c in volume [1]. Telecom / Network operators still generate most of their income carrying voice tra c. There is however a huge revenue potential in delivering reliable guaranteed data services. Network survivability and recovery from network failures are integral to network reliability. Due to the nature of the Internet, recovery from link failures needs to be distributed and dynamic in order to be scalable. Link failure recovery schemes are evaluated in terms of the survivability of the network, the optimal use of network resources, scalability, and the recovery time of such schemes. The need for recovery time to be improved is highlighted by real-time data tra c such as VoIP and video services carried over the Internet. The goal of this thesis is to examine existing link failure recovery schemes and evaluate the need for their extension, and to evaluate the performance of the proposed link failure recovery schemes. i
AFRIKAANSE OPSOMMING: Sedert 2002 het data verkeer die stem verkeer in volume verbygesteek [1]. Telekommunikasie / netwerk operateurs genereer egter steeds die meeste van hul inkomste met stem verkeer. Netwerk oorlewing en die herstel van netwerk mislukkings is integraal tot netwerk stabiliteit. Die samestelling van die Internet noodsaak dat die herstel van skakel mislukkings verspreid en dinamies van natuur moet wees. Die herstel-skema van skakel mislukkings word evalueer in terme van die oorleefbaarheid van die netwerk, die mees e ektiewe benutting van network bronne, aanpasbaarheid, en die herstel tydperk van die skema. Die vinnig moontlikste herstel tydperk word genoodsaak deur oombliklike data verkeer soos VoIP en beeld dienste wat oor die Internet gedra word. The doel van hierdie tesis is om bestaande skakel mislukking herstel skemas te evalueer, en dan verder ondersoek in te stel na hul uitbreiding. Daarna word die voorgestelde skakel mislukking skema se e ektiwiteit gemeet.
Zayani, Mohamed-Haykel. „Link prediction in dynamic and human-centered mobile wireless networks“. Phd thesis, Institut National des Télécommunications, 2012. http://tel.archives-ouvertes.fr/tel-00787564.
Der volle Inhalt der QuelleZayani, Mohamed-Haykel. „Link prediction in dynamic and human-centered mobile wireless networks“. Electronic Thesis or Diss., Evry, Institut national des télécommunications, 2012. http://www.theses.fr/2012TELE0031.
Der volle Inhalt der QuelleDuring the last years, we have observed a progressive and continuous expansion of human-centered mobile wireless networks. The advent of these networks has encouraged the researchers to think about new solutions in order to ensure efficient evaluation and design of communication protocols. In fact, these networks are faced to several constraints as the lack of infrastructure, the dynamic topology, the limited resources and the deficient quality of service and security. We have been interested in the dynamicity of the network and in particular in human mobility. The human mobility has been widely studied in order to extract its intrinsic properties and to harness them to propose more accurate approaches. Among the prominent properties depicted in the literature, we have been specially attracted by the impact of the social interactions on the human mobility and consequently on the structure of the network. To grasp structural information of such networks, many metrics and techniques have been borrowed from the Social Network Analysis (SNA). The SNA can be seen as another network measurement task which extracts structural information of the network and provides useful feedback for communication protocols. In this context, the SNA has been extensively used to perform link prediction in social networks relying on their structural properties. Motivated by the importance of social ties in human-centered mobile wireless networks and by the possibilities that are brought by SNA to perform link prediction, we are interested by designing the first link prediction framework adapted for mobile wireless networks as Mobile Ad-hoc Networks (MANETs) and Delay/Disruption Tolerant Networks (DTN). Our proposal tracks the evolution of the network through a third-order tensor over T periods and computes the sociometric Katz measure for each pair of nodes to quantify the strength of the social ties between the network entities. Such quantification gives insights about the links that are expected to occur in the period T+1 and the new links that are created in the future without being observed during the tracking time. To attest the efficiency of our framework, we apply our link prediction technique on three real traces and we compare its performance to the ones of other well-known link prediction approaches. The results prove that our method reaches the highest level of accuracy and outperforms the other techniques. One of the major contributions behind our proposal highlights that the link prediction in such networks can be made in a distributed way. In other words, the nodes can predict their future links relying on the local information (one-hop and two-hop neighbors) instead of a full knowledge about the topology of the network. Furthermore, we are keen to improve the link prediction performance of our tensor-based framework. To quantify the social closeness between the users, we take into consideration two aspects of the relationships: the recentness of the interactions and their frequency. From this perspective, we wonder if we can consider a third criterion to improve the link prediction precision. Asserting the heuristic that stipulates that persistent links are highly predictable, we take into account the stability of the relationships (link and proximity stabilities). To measure it, we opt for the entropy estimation of a time series proposed in the Lempel-Ziv data compression algorithm. As we think that our framework measurements and the stability estimations complement each other, we combine them in order to provide new link prediction metrics. The simulation results emphasize the pertinence of our intuition. Providing a tensor-based link prediction framework and proposing relative enhancements tied to stability considerations represent the main contributions of this thesis. Along the thesis, our concern was also focused on mechanisms and metrics that contribute towards improving communication protocols in these mobile networks […]
Hoang, Hai Nguyen. „A dynamic link speed mechanism for energy saving in interconnection networks“. Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/284439.
Der volle Inhalt der QuelleThe growing processing power of parallel computing systems requires interconnection networks a higher level of complexity and higher performance, thus they consume more energy. A larger amount of energy consumed leads to many problems related to cost, cooling infrastructure and system stability. Link components contribute a substantial proportion of the total energy consumption of the networks. Several proposals have been approaching a better link power management. In this thesis, we leverage built-in features of current link technology to dynamically adjust the link speed as a function of traffic. By doing this, the interconnection network consumes less energy when traffic is light. We also propose a link speed aware routing policy that favors high-speed links in the process of routing packets to boost the performance of the network when the energy saving mechanism is deployed. The evaluation results show that the networks deploying our energy saving mechanism reduce the amount of energy consumption with the expense of an increase in the average packet latency. However, with the link speed aware routing policy proposal, our mechanism incurs a less increase in the average packet latency while achieving similar energy saving, compared with other conventional approaches in literature.
Choudhury, Nazim Ahmed. „Mining Time-aware Actor-level Evolution Similarity for Link Prediction in Dynamic Network“. Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/18640.
Der volle Inhalt der QuelleJunuthula, Ruthwik Reddy. „Modeling, Evaluation and Analysis of Dynamic Networks for Social Network Analysis“. University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1544819215833249.
Der volle Inhalt der QuelleArastuie, Makan. „Generative Models of Link Formation and Community Detection in Continuous-Time Dynamic Networks“. University of Toledo / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1596718772873086.
Der volle Inhalt der QuelleTibhirt, Amel. „Mitigation of Cross-link Interference for MIMO TDD Dynamic Systems in 5G+ Networks“. Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS017.pdf.
Der volle Inhalt der QuelleDynamic Time Division Duplexing (DynTDD) is pivotal in 5th generation (5G) networks, adapting resources to diverse needs. It enhances Spectral Efficiency (SE) by dynamically allocating time slots for Uplink (UL) and Downlink (DL) transmissions based on traffic demand and channel conditions. This dynamic frequency allocation ensures efficient spectrum use and supports massive connectivity, low latency, and Quality-of-Service (QoS) requirements. Its role in carrier aggregation maximizes data rates and capacity, highlighting its importance in advanced wireless communication technologies.However, DynTDD faces a significant challenge: cross-link interference (CLI). CLI occurs when UL and DL transmissions share the same frequency bands, leading to interference.CLI comprises base station to base station (BS-to-BS) or downlink to uplink (DL-to-UL) interference and user equipment to user equipment (UE-to-UE) or uplink to downlink (UL-to-DL) interference. In DL-to-UL interference, DL transmissions spill into UL bands, degrading UL communication. Conversely, UL-to-DL interference occurs when UL transmissions interfere with DL reception.Effectively managing CLI is crucial for DynTDD's performance and reliability.This thesis aims to unleash the full potential of DynTDD by overcoming CLI challenges through rigorous analysis and innovative methodologies. The research not only advances DynTDD technology but also pioneers solutions applicable to various communication contexts, driving innovative interference alignment strategies across diverse scenarios.The study in this thesis is divided into multiple segments. The first part establishes the foundation with the problem definition and essential theoretical concepts. The second part delves into the conditions determining the feasibility of interference alignment. These conditions are expressed in terms of the problem dimension and establish the achievable Degree of Freedom (DoF), representing the number of data streams. It explores interference alignment in centralized scenarios, considering both full-rank and reduced-rank Multiple-Input Multiple-Output (MIMO) Interference Broadcast Multiple Access Channel-Interference Channel (IBMAC-IC), addressing real-world complexities. Additionally, it extends the exploration to a distributed scenario, providing a realistic understanding of communication complexities. The third part focuses on optimization techniques, specifically beamforming. It introduces Zero Forcing (ZF) beamforming for both DL and UL User Equipment (UE)s to align CLI in DynTDD systems. It emphasizes the impact of UE-to-UE interference and presents improvements brought by the Weighted Minimum Mean Square Error (WMMSE) algorithms. Furthermore, it explores power allocation optimization using the water-filling algorithm
Ahmad, Syed Amaar. „Autonomous Link-Adaptive Schemes for Heterogeneous Networks with Congestion Feedback“. Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/46725.
Der volle Inhalt der QuellePh. D.
Bücher zum Thema "Dynamic link networks"
Pikelis, Winfred Prescott. Dynamic reconfiguration and link fault tolerance in a Transputer network. Monterey, Calif: Naval Postgraduate School, 1989.
Den vollen Inhalt der Quelle findenMorles, E. Colina. On-line control of dynamic systems using feedforward neural networks. Sheffield: University of Sheffield, Dept. of Automatic Control and Systems Engineering, 1992.
Den vollen Inhalt der Quelle findenJorgensen, Charles C. Direct adaptive aircraft control using dynamic cell structure neural networks. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1997.
Den vollen Inhalt der Quelle findenHeyde, Chris Oliver. Dynamic voltage security assessment for on-line control room application =: (Dynamische Spannungsstabilitätsrechnungen als online Entscheidungsgrundlage für die Leitwarte). Magdeburg: Otto-von-Guericke-Universität Magdeburg, 2010.
Den vollen Inhalt der Quelle findenFlapan, Erica. Knots, molecules, and the universe: An introduction to topology. Providence, Rhode Island: American Mathematical Society, 2015.
Den vollen Inhalt der Quelle findenGraen, George B. The “Missing Link” in Managerial Network Dynamics. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780195398793.013.0021.
Der volle Inhalt der QuelleHong, Yu. Making a Home-Base Strategy. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252040917.003.0005.
Der volle Inhalt der QuelleMatthews, Joseph, und Carson Block. Library Information Systems. 2. Aufl. Libraries Unlimited, 2019. http://dx.doi.org/10.5040/9798400679124.
Der volle Inhalt der QuelleGabrielsen, Vincent, und Mario C. D. Paganini, Hrsg. Private Associations in the Ancient Greek World. Cambridge University Press, 2021. http://dx.doi.org/10.1017/9781108979344.
Der volle Inhalt der QuelleTriggianese, Manuela, Olindo Caso und Yagiz Söylev, Hrsg. LIVING STATIONS: The Design of Metro Stations in the (east flank) metropolitan areas of Rotterdam. TU Delft Bouwkunde, 2021. http://dx.doi.org/10.47982/bookrxiv.3.
Der volle Inhalt der QuelleBuchteile zum Thema "Dynamic link networks"
Pezaros, D. P., M. Sifalakis, S. Schmid und D. Hutchison. „Dynamic Link Measurements Using Active Components“. In Active Networks, 188–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71500-9_14.
Der volle Inhalt der QuelleRan, Bin, und David Boyce. „Link Travel Time Functions for Dynamic Network Models“. In Modeling Dynamic Transportation Networks, 291–309. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80230-0_13.
Der volle Inhalt der QuelleKong, Chao, Hao Li, Liping Zhang, Haibei Zhu und Tao Liu. „Link Prediction on Dynamic Heterogeneous Information Networks“. In Computational Data and Social Networks, 339–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34980-6_36.
Der volle Inhalt der QuelleHisano, Ryohei. „Semi-supervised Graph Embedding Approach to Dynamic Link Prediction“. In Complex Networks IX, 109–21. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73198-8_10.
Der volle Inhalt der QuelleChoudhury, Nazim, und Shahadat Uddin. „Evolution Similarity for Dynamic Link Prediction in Longitudinal Networks“. In Complex Networks VIII, 109–18. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54241-6_9.
Der volle Inhalt der QuelleRahman, Mahmudur, und Mohammad Al Hasan. „Link Prediction in Dynamic Networks Using Graphlet“. In Machine Learning and Knowledge Discovery in Databases, 394–409. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46128-1_25.
Der volle Inhalt der QuelleDivakaran, Aswathy, und Anuraj Mohan. „A Network Embedding Approach for Link Prediction in Dynamic Networks“. In Communications in Computer and Information Science, 18–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9700-8_2.
Der volle Inhalt der QuelleFish, Benjamin, und Rajmonda S. Caceres. „Handling Oversampling in Dynamic Networks Using Link Prediction“. In Machine Learning and Knowledge Discovery in Databases, 671–86. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23525-7_41.
Der volle Inhalt der QuelleNguyen, Viet-An, Cane Wing-Ki Leung und Ee-Peng Lim. „Modeling Link Formation Behaviors in Dynamic Social Networks“. In Social Computing, Behavioral-Cultural Modeling and Prediction, 349–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19656-0_48.
Der volle Inhalt der QuelleNgonmang, Blaise, Emmanuel Viennet, Maurice Tchuente und Vanessa Kamga. „Community Analysis and Link Prediction in Dynamic Social Networks“. In Computing in Research and Development in Africa, 83–101. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08239-4_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Dynamic link networks"
Zhu, Xiaobo, Yan Wu, Qinhu Zhang, Zhanheng Chen und Ying He. „Dynamic Link Prediction for New Nodes in Temporal Graph Networks“. In 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10650904.
Der volle Inhalt der QuelleDaurembekova, Ainur, und Hans D. Schotten. „Unified 3D Networks: Dynamic RAN Functions Placement and Link Challenges“. In 2024 International Symposium on Networks, Computers and Communications (ISNCC), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/isncc62547.2024.10759056.
Der volle Inhalt der QuelleHou, Xiaojie, Peizhang Liu, Zhichun Sun, Chao Xi, Bo Yang und Ruijie Zhu. „Link State Aware Dynamic Service Function Chains Deployment in Satellite Optical Networks“. In 2024 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), 1–5. IEEE, 2024. https://doi.org/10.1109/acp/ipoc63121.2024.10809794.
Der volle Inhalt der QuelleYu, Wenchao, Wei Cheng, Charu C. Aggarwal, Haifeng Chen und Wei Wang. „Link Prediction with Spatial and Temporal Consistency in Dynamic Networks“. In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/467.
Der volle Inhalt der QuelleLi, Huikang, Yi Gao, Wei Dong und Chun Chen. „Preferential link tomography in dynamic networks“. In 2017 IEEE 25th International Conference on Network Protocols (ICNP). IEEE, 2017. http://dx.doi.org/10.1109/icnp.2017.8117552.
Der volle Inhalt der QuelleLindstrom, M., und J. Zander. „Dynamic link asymmetry in 'bunched' wireless networks“. In Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No.99CH36324). IEEE, 1999. http://dx.doi.org/10.1109/vetecf.1999.797155.
Der volle Inhalt der QuelleAggarwal, Cham, Yan Xie und Philip S. Yu. „On Dynamic Link Inference in Heterogeneous Networks“. In Proceedings of the 2012 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2012. http://dx.doi.org/10.1137/1.9781611972825.36.
Der volle Inhalt der QuelleLi, Jundong, Kewei Cheng, Liang Wu und Huan Liu. „Streaming Link Prediction on Dynamic Attributed Networks“. In WSDM 2018: The Eleventh ACM International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3159652.3159674.
Der volle Inhalt der QuelleYang, Cheng, Chunchen Wang, Yuanfu Lu, Xumeng Gong, Chuan Shi, Wei Wang und Xu Zhang. „Few-shot Link Prediction in Dynamic Networks“. In WSDM '22: The Fifteenth ACM International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3488560.3498417.
Der volle Inhalt der QuelleArun Kumar, S. P., und Mukul Golash. „Efficient flow-aware dynamic link load balancing“. In 2009 First International Communication Systems and Networks and Workshops (COMSNETS). IEEE, 2009. http://dx.doi.org/10.1109/comsnets.2009.4808841.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Dynamic link networks"
Neiderer, Andrew M. Dynamically Generated Nodes and Links for a Dynamic Network Structure Using X3D. Fort Belvoir, VA: Defense Technical Information Center, Mai 2009. http://dx.doi.org/10.21236/ada501121.
Der volle Inhalt der QuelleChen, Yongzhou, Ammar Tahir und Radhika Mittal. Controlling Congestion via In-Network Content Adaptation. Illinois Center for Transportation, September 2022. http://dx.doi.org/10.36501/0197-9191/22-018.
Der volle Inhalt der QuelleDroogan, Julian, Lise Waldek, Brian Ballsun-Stanton und Jade Hutchinson. Mapping a Social Media Ecosystem: Outlinking on Gab & Twitter Amongst the Australian Far-right Milieu. RESOLVE Network, September 2022. http://dx.doi.org/10.37805/remve2022.6.
Der volle Inhalt der QuelleEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak und Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, Juli 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Der volle Inhalt der QuelleLai, Chin-Ta, und Joel Conte. Dynamic Modeling of the UC San Diego NHERI Six-Degree-of-Freedom Large High-Performance Outdoor Shake Table. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, August 2024. http://dx.doi.org/10.55461/jsds5228.
Der volle Inhalt der QuelleShe, Ruifeng, und Yanfeng Ouyang. Generalized Link-Cost Function and Network Design for Dedicated Truck-Platoon Lanes to Improve Energy, Pavement Sustainability, and Traffic Efficiency. Illinois Center for Transportation, November 2021. http://dx.doi.org/10.36501/0197-9191/21-037.
Der volle Inhalt der QuelleKoechlin, Valerie, und Gianmarco León. International Remittances and Income Inequality: An Empirical Investigation. Inter-American Development Bank, Oktober 2006. http://dx.doi.org/10.18235/0010865.
Der volle Inhalt der QuellePinson, Lauren. Addressing the Linkages Between Illicit Arms, Organized Crime and Armed Conflict. UNIDIR, September 2022. http://dx.doi.org/10.37559/caap/22/pacav/10.
Der volle Inhalt der QuelleSchmidt, Elizabeth. Shoreline change at Fort Matanzas National Monument: 2020–2021 data summary. National Park Service, Januar 2022. http://dx.doi.org/10.36967/nrds-2290193.
Der volle Inhalt der QuelleWalmsley, Terrie, Angel Aguiar und Badri Narayanan. Introduction to the Global Trade Analysis Project and the GTAP Data Base. GTAP Working Paper, Mai 2012. http://dx.doi.org/10.21642/gtap.wp67.
Der volle Inhalt der Quelle