Auswahl der wissenschaftlichen Literatur zum Thema „Dynamics“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dynamics" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Dynamics":

1

Pham, Kien Huu, und Trang Thi Thuy Giap. „The liquid–amorphous phase transition, slow dynamics and dynamical heterogeneity for bulk iron: a molecular dynamics simulation“. RSC Advances 11, Nr. 51 (2021): 32435–45. http://dx.doi.org/10.1039/d1ra06394d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Raza, Md Shamim, Nitesh Kumar und Sourav Poddar. „Combustor Characteristics under Dynamic Condition during Fuel – Air Mixingusing Computational Fluid Dynamics“. Journal of Advances in Mechanical Engineering and Science 1, Nr. 1 (08.08.2015): 20–33. http://dx.doi.org/10.18831/james.in/2015011003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

STRADTMANN, Hinnerk. „1D14 Examples for European assessment of vehicle's dynamic running behaviour(Vehicles-Dynamics)“. Proceedings of International Symposium on Seed-up and Service Technology for Railway and Maglev Systems : STECH 2015 (2015): _1D14–1_—_1D14–12_. http://dx.doi.org/10.1299/jsmestech.2015._1d14-1_.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Li, Jian Jia, und Xin Hua Zhao. „Dynamics Modeling and Simulation of Tracked Five DOF Mobile Manipulator“. Advanced Materials Research 433-440 (Januar 2012): 4817–22. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.4817.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The dynamical analysis for the tracked moving platform and the manipulator are established based on by Newton-Euler method and Dynamics model is respectively obtained, Moreover, Dynamic simulation is conducted, and reveals the input-output relation for the motion system from dynamical simulation, and plays a solid basic for the further study of dynamic modeling and motion control.
5

SUN, KEHUI, und J. C. SPROTT. „DYNAMICS OF A SIMPLIFIED LORENZ SYSTEM“. International Journal of Bifurcation and Chaos 19, Nr. 04 (April 2009): 1357–66. http://dx.doi.org/10.1142/s0218127409023688.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A simplified Lorenz system with one bifurcation parameter is investigated by a detailed theoretical analysis as well as dynamic simulation, including some basic dynamical properties, Lyapunov exponent spectra, fractal dimension, bifurcations and routes to chaos. The results show that this system has complex dynamics with interesting characteristics.
6

Mozur, Eve M., und James R. Neilson. „Cation Dynamics in Hybrid Halide Perovskites“. Annual Review of Materials Research 51, Nr. 1 (26.07.2021): 269–91. http://dx.doi.org/10.1146/annurev-matsci-080819-012808.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Hybrid halide perovskite semiconductors exhibit complex, dynamical disorder while also harboring properties ideal for optoelectronic applications that include photovoltaics. However, these materials are structurally and compositionally distinct from traditional compound semiconductors composed of tetrahedrally coordinated elements with an average valence electron count of silicon. The additional dynamic degrees of freedom of hybrid halide perovskites underlie many of their potentially transformative physical properties. Neutron scattering and spectroscopy studies of the atomic dynamics of these materials have yielded significant insights into their functional properties. Specifically, inelastic neutron scattering has been used to elucidate the phonon band structure, and quasi-elastic neutron scattering has revealed the nature of the uncorrelated dynamics pertaining to molecular reorientations. Understanding the dynamics of these complex semiconductors has elucidated the temperature-dependent phase stability and origins of defect-tolerant electronic transport from the highly polarizable dielectric response. Furthermore, the dynamic degrees of freedom of the hybrid perovskites provide additional opportunities for application engineering and innovation.
7

Menzies, Dylan. „Composing instrument control dynamics“. Organised Sound 7, Nr. 3 (Dezember 2002): 255–66. http://dx.doi.org/10.1017/s1355771802003059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The expression gestural mapping is well imbedded in the language of instrument designers, describing the function from interface control parameters to synthesis control parameters. This function is in most cases implicitly assumed to be instantaneous, so that at any time its output depends only on its input at that time. Here more general functions are considered, in which the output depends on the history of input, especially functions that behave like physical dynamic systems, such as a damped resonator. Acoustic instruments are rich in dynamical behaviour. Introducing dynamics at the control stage of an electronic instrument can help compensate for lack of dynamics in later non-physical synthesis stages. A broadening of the function space offers new aesthetic possibilities for composing instruments. Examples are presented to illustrate the new design/composition mode as well as practical techniques. In this context, it is suggested that the word mapping be updated with the more descriptive expression dynamic control processing.
8

VINCENT, THOMAS L. „THE G-FUNCTION METHOD FOR ANALYZING DARWINIAN DYNAMICS“. International Game Theory Review 06, Nr. 01 (März 2004): 69–90. http://dx.doi.org/10.1142/s0219198904000083.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Darwinian dynamics refers to the dynamical processes underlying natural selection that drives evolution. We are interested in the evolution of strategies used by biological entities. There are two dynamical processes involved, population dynamics (relationship between population density and the agents affecting density) and strategy dynamics (relationship between strategy values and the agents affecting these values). Darwinian dynamics is a total dynamic obtained through the coupling of these two processes, the modeling of which, involves dynamical systems, optimization, stability, and game theory. Using a method called the G-function approach, we explore how an evolutionary process can take place in a set of differential equations, and we examine some interesting links between evolutionary stability and optimization as embodied in the ESS maximum principle. One of the interesting paradoxes is how a "hill-climbing" algorithm can end up at a stable local minimum and why this might have important implications in understanding speciation (the creation of new species from a homogeneous population). Finally, we will examine how these concepts are currently being applied to model the development of tumors in humans.
9

Beiran, Manuel, Alexis Dubreuil, Adrian Valente, Francesca Mastrogiuseppe und Srdjan Ostojic. „Shaping Dynamics With Multiple Populations in Low-Rank Recurrent Networks“. Neural Computation 33, Nr. 6 (13.05.2021): 1572–615. http://dx.doi.org/10.1162/neco_a_01381.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
An emerging paradigm proposes that neural computations can be understood at the level of dynamic systems that govern low-dimensional trajectories of collective neural activity. How the connectivity structure of a network determines the emergent dynamical system, however, remains to be clarified. Here we consider a novel class of models, gaussian-mixture, low-rank recurrent networks in which the rank of the connectivity matrix and the number of statistically defined populations are independent hyperparameters. We show that the resulting collective dynamics form a dynamical system, where the rank sets the dimensionality and the population structure shapes the dynamics. In particular, the collective dynamics can be described in terms of a simplified effective circuit of interacting latent variables. While having a single global population strongly restricts the possible dynamics, we demonstrate that if the number of populations is large enough, a rank R network can approximate any R-dimensional dynamical system.
10

Mei, Zhuanglin, und Toshiki Oguchi. „Network Structure Identification Based on Measured Output Data Using Koopman Operators“. Mathematics 11, Nr. 1 (26.12.2022): 89. http://dx.doi.org/10.3390/math11010089.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This paper considers the identification problem of network structures of interconnected dynamical systems using measured output data. In particular, we propose an identification method based on the measured output data of each node in the network whose dynamic is unknown. The proposed identification method consists of three steps: we first consider the outputs of the nodes to be all the states of the dynamics of the nodes, and the unmeasurable hidden states to be dynamical inputs with unknown dynamics. In the second step, we define the dynamical inputs as new variables and identify the dynamics of the network system with measured output data using Koopman operators. Finally, we extract the network structure from the identified dynamics as the information transmitted via the network. We show that the identified coupling functions, which represent the network structures, are actually projections of the dynamical inputs onto the space spanned by some observable functions. Numerical examples illustrate the validity of the obtained results.

Dissertationen zum Thema "Dynamics":

1

Kulich, Martin. „Dynamic Template Adjustment in Continuous Keystroke Dynamics“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2015. http://www.nusl.cz/ntk/nusl-234927.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Dynamika úhozů kláves je jednou z behaviorálních biometrických charakteristik, kterou je možné použít pro průběžnou autentizaci uživatelů. Vzhledem k tomu, že styl psaní na klávesnici se v čase mění, je potřeba rovněž upravovat biometrickou šablonu. Tímto problémem se dosud, alespoň pokud je autorovi známo, žádná studie nezabývala. Tato diplomová práce se pokouší tuto mezeru zaplnit. S pomocí dat o časování úhozů od 22 dobrovolníků bylo otestováno několik technik klasifikace, zda je možné je upravit na online klasifikátory, zdokonalující se bez učitele. Výrazné zlepšení v rozpoznání útočníka bylo zaznamenáno u jednotřídového statistického klasifikátoru založeného na normované Euklidovské vzdálenosti, v průměru o 23,7 % proti původní verzi bez adaptace, zlepšení však bylo pozorováno u všech testovacích sad. Změna míry rozpoznání správného uživatele se oproti tomu různila, avšak stále zůstávala na přijatelných hodnotách.
2

Munz, Marton. „Computational studies of protein dynamics and dynamic similarity“. Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:2fb76765-3e43-409b-aad3-b5202f4668b3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
At the time of writing this thesis, the complete genomes of more than 180 organisms have been sequenced and more than 80000 biological macromolecular structures are available in the Protein Data Bank (PDB). While the number of sequenced genomes and solved three-dimensional structures are rapidly increasing, the functional annotation of protein sequences and structures is a much slower process, mostly because the experimental de-termination of protein function is expensive and time-consuming. A major class of in silico methods used for protein function prediction aim to transfer annotations between proteins based on sequence or structural similarities. These approaches rely on the assumption that homologous proteins of similar primary sequences and three-dimensional structures also have similar functions. While in most cases this assumption appears to be valid, an increasing number of examples show that proteins of highly similar sequences and/or structures can have different biochemical functions. Thus the relationship between the divergence of protein sequence, structure and function is more complex than previously anticipated. On the other hand, there is mounting evidence suggesting that minor changes of the sequences and structures of proteins can cause large differences in their conformational dynamics. As the intrinsic fluctuations of many proteins are key to their biochemical functions, the fact that very similar (almost identical) sequences or structures can have entirely different dynamics might be important for understanding the link between sequence, structure and function. In other words, the dynamic similarity of proteins could often serve as a better indicator of functional similarity than the similarity of their sequences or structures alone. Currently, little is known about how proteins are distributed in the 'dynamics space' and how protein motions depend on structure and sequence. These problems are relevant in the field of protein design, studying protein evolution and to better understand the functional differences of proteins. To address these questions, one needs a precise definition of dynamic similarity, which is not trivial given the complexity of protein motions. This thesis is intended to explore the possibilities of describing the similarity of proteins in the 'dynamics space'. To this end, novel methods of characterizing and comparing protein motions based on molecular dynamics simulation data were introduced. The generally applicable approach was tested on the family of PDZ domains; these small protein-protein interaction domains play key roles in many signalling pathways. The methodology was successfully used to characterize the dynamic dissimilarities of PDZ domains and helped to explain differences of their functional properties (e.g. binding promiscuity) also relevant for drug design studies. The software tools developed to implement the analysis are also introduced in the thesis. Finally, a network analysis study is presented to reveal dynamics-mediated intramolecular signalling pathways in an allosteric PDZ domain.
3

Zivanovic, Sanja. „Attractors in Dynamics with Choice“. Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_dissertations/210.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Dynamics with choice is a generalization of discrete-time dynamics where instead of the same evolution operator at every time step there is a choice of operators to transform the current state of the system. Many real life processes studied in chemical physics, engineering, biology and medicine, from autocatalytic reaction systems to switched systems to cellular biochemical processes to malaria transmission in urban environments, exhibit the properties described by dynamics with choice. We study the long-term behavior in dynamics with choice. We prove very general results on the existence and properties of global compact attractors in dynamics with choice. In addition, we study the dynamics with restricted choice when the allowed sequences of operators correspond to subshifts of the full shift. One of practical consequences of our results is that when the parameters of a discrete-time system are not known exactly and/or are subject to change due to internal instability, or a strategy, or Nature's intervention, the long term behavior of the system may not be correctly described by a system with "averaged" values for the parameters. There may be a Gestalt effect.
4

Demiray, Turhan Hilmi. „Simulation of power system dynamics using dynamic phasor models /“. Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17607.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Durazzo, Gerardo. „Simulation of supply chains dynamics using fluid-dynamic models“. Doctoral thesis, Universita degli studi di Salerno, 2013. http://hdl.handle.net/10556/887.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
2011 - 2012
The aim of thesis is to present some macroscopic models for supply chains and networks able to reproduce the goods dynamics, successively to show, via simulations, some phenomena appearing in planning and managing such systems and, finally, to dead with optimization problems... [edited by author]
XI n.s.
6

Kovář, Jiří. „Využití „Open Dynamics Engine“ pro modelování mobilních robotů“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008. http://www.nusl.cz/ntk/nusl-227991.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This diploma thesis deals with the problems of virtual physical modelling of mobile robots for the needs of their real-time control. To create a virtual physical world, an open-source project OPEN DYNAMICS ENGINE (ODE) was used, the results were displayed facilitating DirectX graphical interface. Simulated systems in ODE were written in C# on Microsoft.NET platform. The properites and qualities in ODE were verified by simulation in several types of simple systems and on a simplified robot model "Kracmera I.". Subsequently, the usability of ODE for its control was being verified.
7

Mulder, William Alexander. „Dynamics of gas in a rotating galaxy“. [Leiden] : Sterrewacht Leiden, 1985. http://catalog.hathitrust.org/api/volumes/oclc/12129828.html.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Marketing, Corporate Affairs and. „Dynamics“. Corporate Affairs and Marketing, 2004. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1000612.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gotte, Anders. „Dynamics in Ceria and Related Materials from Molecular Dynamics and Lattice Dynamics“. Doctoral thesis, Uppsala University, Department of Materials Chemistry, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7374.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:

In discussions of heterogeneous catalysis and other surface-related phenomena, the dynamical properties of the catalytic material are often neglected, even at elevated temperatures. An example is the three-way catalyst (TWC), used for treatment of exhaust gases from combustion engines operating at several hundred degrees Celsius. In the TWC, reduced ceria (CeO2-x) is one of the key components, where it functions as an oxygen buffer, storing and releasing oxygen to provide optimal conditions for the catalytic conversion of the pollutants. In this process it is evident that dynamics plays a crucial role, not only ionic vibrations, but also oxygen diffusion.

In this thesis, the structure and dynamics of several ionic crystalline compounds and their surfaces have been studied by means of Molecular dynamics (MD) simulations and Lattice dynamics (LD) calculations. The main focus lies on CeO2-x, but also CeO2, MgO and CaF2 have been investigated.

The presence of oxygen vacancies in ceria is found to lead to significant distortions of the oxygen framework around the defect (but not of the cerium framework). As a consequence, a new O-O distance emerges, as well as a significantly broadened Ce-O distance distribution.

The presence of oxygen vacancies in ceria also leads to increased dynamics. The oxygen self-diffusion in reduced ceria was calculated from MD simulations in the temperature range 800-2000 K, and was found to follow an Arrhenius behaviour with a vacancy mechanism along the crystallographic <100> directions only.

The cation and anion vibrational surface dynamics were investigated for MgO (001) using DFT-LD and for CaF2 (111) in a combined LEED and MD study. Specific surface modes were found for MgO and increased surface dynamics was found both experimentally and theoretically for CaF2, which is isostructural with CeO2.

Many methodological aspects of modeling dynamics in ionic solids are also covered in this thesis. In many cases, the representation of the model system (slab thickness, simulation box-size and the choice of ensemble) was found to have a significant influence on the results.

10

Van, Wychen Wesley. „The Dynamics and Dynamic Discharge of the Ice Masses and Tidewater Glaciers of the Canadian High Arctic“. Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33180.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Speckle tracking of synthetic aperture RADAR imagery (Radarsat-1/2, ALOS PALSAR) and feature tracking of optical (Landsat-7 ETM+) imagery is used to determine the entire surface velocity structure of the major ice masses of the Canadian High Arctic in 2000, 2010-2015 and for select tidewater terminating glaciers from 1999-2010. At the termini of tidewater glaciers, surface ice velocities are combined with measured/modelled ice thicknesses to derive an estimate of mass loss via dynamic (iceberg) discharge. The total dynamic discharge for the ice masses of the southern Canadian Arctic Archipelago (SCAA: Baffin and Bylot Islands) is between ~17 and 180 Mt a-1 (0.017 to 0.180 Gt a-1) for the period 2007-2011, compared to a dynamic discharge of ~2.47  ± 0.88 Gt a-1 for the northern Canadian Arctic Archipelago (NCAA: Devon, Ellesmere, Axel Heiberg Islands) for the period 2011-2015. A comparison of these values with rates of mass loss via climatic mass balance (surface melt and runoff) indicates that dynamic discharge accounted for ~3.1% of total ablation for the NCAA in 2012 and ~0.11% of total ablation in the SCAA between 2007 and 2010. This reveals that total ablation in the Canadian Arctic is currently dominated by surface melt and runoff. The glacier velocity dataset provides the most comprehensive record of ice motion and dynamic discharge in the Canadian Arctic to date and reveals a large degree of variability in glacier motion within the region over the last ~15 years. Most of the major glaciers in the NCAA have decelerated and their resultant dynamic discharge has decreased over the observation period, which is largely attributed to cyclical phases attributed to surging and pulsing. On pulse-type glaciers, variation in ice motion is largely confined to regions where the bed is located below sea level. A notable departure from the overall trend of regional velocity slowdown is the widespread acceleration of the Trinity and Wykeham Glaciers of the Prince of Wales Icefield (the largest glacier complex in the Canadian Arctic), which cannot be explained by surge or pulse mechanisms. The increased discharge from these two glaciers nearly compensates (within error) for the decrease in iceberg discharge from other glaciers across the study region and indicates that total dynamic discharge from the Canadian Arctic can be sensitive to the variations of ice flow of just a few glaciers.

Bücher zum Thema "Dynamics":

1

Jones, C. K. R. T., Kirchgraber Urs 1945-, Walther Hans-Otto und Bielawski R, Hrsg. Dynamics reported: Expositions in dynamical systems. Berlin: Springer-Verlag, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

C. K. R. T. Jones. Dynamics Reported: Expositions in Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jones, C. K. R. T., Kirchgraber U. 1945-, Walther Hans-Otto und Fournier G. 1947-, Hrsg. Dynamics reported: Expositions in dynamical systems. Berlin: Springer Verlag, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

C. K. R. T. Jones. Dynamics Reported: Expositions in Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

C. K. R. T. Jones. Dynamics Reported: Expositions in Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jones, C. K. R. T., Kirchgraber U. 1945-, Walther Hans-Otto und Blokh A. M, Hrsg. Dynamics reported: Expositions in dynamical systems. Berlin: Springer-Verlag, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Cong, Nguyen Dinh. Topological dynamics of random dynamical systems. Oxford: Clarendon Press, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Jones, C. K. R. T., Kirchgraber U. 1945-, Walther Hans-Otto und Dumas A. M, Hrsg. Dynamics reported: Expositions in dynamical systems. Berlin: Springer-Verlag, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Coornaert, M. Symbolic dynamcis [i.e. dynamics] and hyperbolic groups. Berlin: Springer-Verlag, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

E, Goodman Lawrence. Dynamics. 3. Aufl. Mineola, N.Y: Dover Publications, 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Dynamics":

1

Shen, Dan. „Dual dynamics versus single dynamic“. In Dual Narrative Dynamics, 94–107. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003353027-10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Poulos, Thomas L. „Cytochrome P450 Dynamics Dynamics“. In Fifty Years of Cytochrome P450 Research, 75–94. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54992-5_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gustafson, Stephen J., und Israel Michael Sigal. „Dynamics“. In Mathematical Concepts of Quantum Mechanics, 13–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55729-3_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Merlet, Jean-Pierre. „Dynamics“. In Solid Mechanics and Its Applications, 269–81. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-9587-7_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sciavicco, Lorenzo, und Bruno Siciliano. „Dynamics“. In Modelling and Control of Robot Manipulators, 131–83. London: Springer London, 2000. http://dx.doi.org/10.1007/978-1-4471-0449-0_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hu, Pei-Chu, und Chung-Chun Yang. „Dynamics“. In Meromorphic Functions over Non-Archimedean Fields, 139–75. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9415-8_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

de Jesus, Vitor L. B. „Dynamics“. In Undergraduate Lecture Notes in Physics, 55–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52407-8_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Stepan, Gabor. „Dynamics“. In CIRP Encyclopedia of Production Engineering, 1–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35950-7_6528-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Spohn, Herbert. „Dynamics“. In Large Scale Dynamics of Interacting Particles, 7–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84371-6_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Selig, J. M. „Dynamics“. In Monographs in Computer Science, 209–31. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-2484-4_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Dynamics":

1

„Dynamics 2018 TOC“. In 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2018. http://dx.doi.org/10.1109/dynamics.2018.8601466.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

„Contents“. In 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239520.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Glukhov, V. I. „Geometrical product specifications: Alternative standardization principles, coordinate systems, models, classification and verification“. In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005655.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Nikonova, Galina V. „HF-UHF pulse shaping for testing high-speed circuits“. In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005688.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

„[Front cover]“. In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005630.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

„Table of content“. In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005631.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Anfilofiev, A. E., I. A. Hodashinsky und O. O. Evsutin. „Algorithm for tuning fuzzy network attack classifiers based on invasive weed optimization“. In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005632.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Averchenko, A. P., und B. D. Zhenatov. „Hartley transform as alternative to fourier transform in digital data processing systems“. In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005633.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Baranova, Vitalia E., und Pavel F. Baranov. „The Helmholtz coils simulating and improved in COMSOL“. In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005634.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Shtripling, Lev O., und Vladislav V. Bazhenov. „Oil refining emission automated monitoring system“. In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005635.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Dynamics":

1

Leibovich, Sidney. Vortex Dynamics. Fort Belvoir, VA: Defense Technical Information Center, August 1989. http://dx.doi.org/10.21236/ada212119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Teter, David Fredrick, Tanja Pietrass und Karen Elizabeth Kippen. Materials Dynamics. Office of Scientific and Technical Information (OSTI), März 2018. http://dx.doi.org/10.2172/1423991.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pinkel, Robert, und Jody M. Klymak. Ocean Dynamics. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada612143.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pinkel, Robert. Ocean Dynamics. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada542616.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pinkel, R., und M. Merrifield. Ocean Dynamics. Fort Belvoir, VA: Defense Technical Information Center, März 1997. http://dx.doi.org/10.21236/ada333268.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Newhouse, Sheldon E. Nonlinear Dynamics. Fort Belvoir, VA: Defense Technical Information Center, Juli 1991. http://dx.doi.org/10.21236/ada251271.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chamberlin, Ralph V. Fracton Dynamics. Fort Belvoir, VA: Defense Technical Information Center, Juni 1990. http://dx.doi.org/10.21236/ada254624.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Pinkel, Robert. Ocean Dynamics. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada634182.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Baraff, David, und Andrew Witkin. Partitioned Dynamics. Fort Belvoir, VA: Defense Technical Information Center, März 1997. http://dx.doi.org/10.21236/ada594838.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cutler, David, James Poterba und Lawrence Summers. Speculative Dynamics. Cambridge, MA: National Bureau of Economic Research, Januar 1990. http://dx.doi.org/10.3386/w3242.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie