Auswahl der wissenschaftlichen Literatur zum Thema „Electric vehicle integration“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electric vehicle integration" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Electric vehicle integration"

1

Bounagui, Mohamed, Tamou Nasser, Ahmed Essadki, and Youssef Akarne. "Comprehensive Analysis and Future Prospects of Electric Vehicles: Topologies, Efficiency, Challenges, and Power Integration." EPJ Web of Conferences 330 (2025): 06011. https://doi.org/10.1051/epjconf/202533006011.

Der volle Inhalt der Quelle
Annotation:
The electrification of transportation has received considerable attention in modern society for achieving sustainable energy targets. But electric vehicle sales still account for a small proportion in transportation sector. To accelerate the adoption of electric vehicles, several investigated must be established that mainly address the high-cost electric vehicles, range anxiety, lack of charging infrastructure, and ease of maintenance. The main contribution of this work is to present a detailed de- scription on several electric vehicle components, discuss about durability, efficiency and the e
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Satyaveda, Somepalli. "Electric Vehicle Integration: Challenges and Opportunities for Utility Providers." European Journal of Advances in Engineering and Technology 9, no. 10 (2022): 86–90. https://doi.org/10.5281/zenodo.14770528.

Der volle Inhalt der Quelle
Annotation:
The rapid adoption of electric vehicles (EVs) is reshaping global transportation and placing significant demand on energy systems. Utility providers face technical, economic, and regulatory challenges when integrating EVs into existing grids, such as grid load management, infrastructure upgrades, and policy compliance. However, these challenges present unique opportunities, including increased electricity demand, the implementation of Vehicle-to-Grid (V2G) technologies, and enhanced renewable energy integration. This paper explores the current state of EV adoption, evaluates technical and econ
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Simarro-García, Ana, Raquel Villena-Ruiz, Andrés Honrubia-Escribano, and Emilio Gómez-Lázaro. "Effect of Penetration Levels for Vehicle-to-Grid Integration on a Power Distribution Network." Machines 11, no. 4 (2023): 416. http://dx.doi.org/10.3390/machines11040416.

Der volle Inhalt der Quelle
Annotation:
With the exponential growth of electric vehicle sales worldwide over the past years and progress in technology and actions to combat climate change by reducing greenhouse gas emissions, the trend is expected to continue with a significant increase in the deployment of electric vehicles and plug-in hybrids. Given these circumstances, it is essential to identify the constraints that this increase in the number of electric vehicle charging stations poses for the electricity system. Therefore, the analysis developed in this paper discusses the effect of integrating electric vehicle charging statio
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sangappa, Rajeshwar. "Review on Electric Vehicle on IoT." Journal of Emerging Trends in Electrical Engineering 6, no. 2 (2024): 40–43. https://doi.org/10.5281/zenodo.12792638.

Der volle Inhalt der Quelle
Annotation:
<em>Electric vehicles (EVs) integrated with the Internet of Things (IoT) revolutionize transportation by enhancing efficiency, safety, and user experience. This integration enables real-time monitoring of vehicle performance and battery health, smart charging capabilities, and advanced navigation systems. IoT enhances fleet management and provides predictive maintenance, reducing operational costs and downtime. While offering numerous benefits, IoT integration also presents security challenges that must be addressed to safeguard data and vehicle systems. Overall, IoT in EVs paves the way for s
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zainuri, Fuad, Danardono A. S. Danardono A.S, M. Adhitya, et al. "Analytical Conversion of Conventional Car to Electric Vehicle Using 5KW BLDC Electric Motor." Jurnal Penelitian Pendidikan IPA 10, no. 9 (2024): 6703–8. http://dx.doi.org/10.29303/jppipa.v10i9.8599.

Der volle Inhalt der Quelle
Annotation:
The automotive industry is witnessing a paradigm shift towards sustainable and eco-friendly transportation solutions. This project aims to contribute to this transition by converting a conventional internal combustion engine (ICE) car into an electric vehicle (EV) using a 5 kW Brushless DC (BLDC) electric motor. The conversion involves the removal of the traditional engine components and the integration of an electric propulsion system. The key components of the conversion include the BLDC motor, motor controller, battery pack, and associated power electronics. The BLDC motor is chosen for its
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Fang, Tingke, Annette von Jouanne, Emmanuel Agamloh, and Alex Yokochi. "Opportunities and Challenges of Fuel Cell Electric Vehicle-to-Grid (V2G) Integration." Energies 17, no. 22 (2024): 5646. http://dx.doi.org/10.3390/en17225646.

Der volle Inhalt der Quelle
Annotation:
This paper presents an overview of the status and prospects of fuel cell electric vehicles (FC-EVs) for grid integration. In recent years, renewable energy has been explored on every front to extend the use of fossil fuels. Advanced technologies involving wind and solar energy, electric vehicles, and vehicle-to-everything (V2X) are becoming more popular for grid support. With recent developments in solid oxide fuel cell electric vehicles (SOFC-EVs), a more flexible fuel option than traditional proton-exchange membrane fuel cell electric vehicles (PEMFC-EVs), the potential for vehicle-to-grid (
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zaman, Shah, Nouman Ashraf, Zeeshan Rashid, Munira Batool, and Javed Hanif. "Integration of EVs through RES with Controlled Interfacing." Electrical, Control and Communication Engineering 19, no. 1 (2023): 1–9. http://dx.doi.org/10.2478/ecce-2023-0001.

Der volle Inhalt der Quelle
Annotation:
Abstract Electric cars have a lot of promise in future energy markets as a manageable load. A popular vehicle-to-grid control interface, which enables the aggregation of the charging mechanism for energy management in the distribution grid, is one of the most significant road blocks to realize this opportunity. Understanding the ecology of electric transportation and integrating it in local communities to alleviate the energy shortage at peak hours is very complicated. In this research paper, recent standardization initiatives aimed at overcoming obstacles such as the integration of electric c
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shrishail Hatti. "A Study on Latest trends in Automobile Industries with Reference to Electric Vehicles and Smart Grids." International Research Journal on Advanced Engineering and Management (IRJAEM) 2, no. 08 (2024): 2779–85. http://dx.doi.org/10.47392/irjaem.2024.0404.

Der volle Inhalt der Quelle
Annotation:
Automobile is trending now a day because every use personal vehicle for travelling and this paper reveals some of the aspects about the one of the personal vehicles i.e Electric Vehicle and further about Smart grids for that electric vehicle. This is about how Electrical Vehicles can contribute to grid stabilization, simulation-based research for smart charging, grid communication, block chain based technology for Electric Vehicles with the purpose of achieving the international environmental and sustainable goals. Smart grid and future electric vehicle is the most emerging issues that are int
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hao, Ceng Ceng, Yue Jin Tang, and Jing Shi. "Study on the Harmonic Impact of Large Scale Electric Vehicles to Grid." Applied Mechanics and Materials 443 (October 2013): 273–78. http://dx.doi.org/10.4028/www.scientific.net/amm.443.273.

Der volle Inhalt der Quelle
Annotation:
Large scale electric vehicles integration into power grid, as nonlinear loads, will pose inevitable impacts on the operation of power system, one of which the harmonic problem will affect the power quality greatly. Firstly, the article analyzes the characteristics of harmonic caused by electric vehicle charging. And then, the harmonic flow distribution is analyzed based on the IEEE standard node systems. During transient analyses, the electric vehicle charging stations connected to electric grid are represented as harmonic sources. Results show that structure and voltage grade of electric grid
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ota, Yutaka. "Electric Vehicle Integration into Power Systems." IEEJ Transactions on Power and Energy 138, no. 9 (2018): 753–56. http://dx.doi.org/10.1541/ieejpes.138.753.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Electric vehicle integration"

1

Xi, Xiaomin. "Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366106454.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wagner, David. "Sustaining Uber: Opportunities for Electric Vehicle Integration." Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/pomona_theses/168.

Der volle Inhalt der Quelle
Annotation:
Uber and Lyft, the “unregulated taxis” that are putting traditional taxi companies out of business, are expanding quickly and changing the landscape of urban transportation as they go. This thesis analyzes the environmental impacts of Transportation Network Companies, particularly in California, with respect to travel behavior, congestion, and fuel efficiency. The analysis suggests that fuel efficient taxis are being replaced by less fuel efficient Uber and Lyft vehicles. Linear regressions were run on data from the Clean Vehicle Rebate Project’s Electric Vehicle Consumer Survey of electric ve
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Li, Mengyu. "GIS-BASED MODELING OF ELECTRIC VEHICLES AND THE AUSTRALIAN ELECTRICTY GRID." Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/21880.

Der volle Inhalt der Quelle
Annotation:
The decarbonisation of transport and power supply sectors is key to achieving global and national emissions cut targets in line with Paris Agreement’s limiting global warming goals. Electric vehicles (EVs), coupled with large adoption of renewable energy (RE) resources in the power system, offer such carbon mitigation solutions. However, due to the unknown spatio-temporal variability of EV charging load, introducing large quantities of EVs and high shares of variable wind and solar energy poses challenges to the load balance management. Against this background, this thesis examines the potenti
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

FLAMMINI, MARCO GIACOMO. "Reference electric distribution network modelling and integration of electric vehicle charging stations." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2827703.

Der volle Inhalt der Quelle
Annotation:
Smartcities,withprosumersatthecentre,areatthefrontlineoftheenergytransition. The national and international policies should encourage then this transition by promoting, among many aspects, energy digitalization, massive penetration of renewable energies and electrification of the transport sector. To embrace all these changes, a holistic view, covering not only the distribution system, is necessary to plan, design and reorganize in particular urban areas. The radical distribution networks transformation is monitored and presented, both considering technical and non-technical aspects, which aim
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Berthold, Florence. "Integration of Plug-in Hybrid Electric Vehicle using Vehicle-to-home and Home-to-Vehicle Capabilities." Thesis, Belfort-Montbéliard, 2014. http://www.theses.fr/2014BELF0241/document.

Der volle Inhalt der Quelle
Annotation:
Le challenge de ces prochaines années est de réduire le plus possible les émissions de CO2 qui la première cause du réchauffement climatique. L’émission de CO2 est principalement due à l’utilisation du moteur thermique dans le milieu du transport. Pour diminuer cette émission, la solution réside à utiliser des véhicules électriques qui sont non polluants et rechargés par des sources émettant le moins possible de CO2. Mais cela impliquerait une production supplémentaire d’énergie. Aujourd’hui l’énergie électrique est produite principalement par des centrales thermiques au niveau mondial, des ce
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

GUERCIONI, GUIDO RICARDO. "Integration of dual-clutch transmissions in hybrid electric vehicle powertrains." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2706035.

Der volle Inhalt der Quelle
Annotation:
This dissertation presents a study focused on exploring the integration of Dual-Clutch Transmissions (DCTs) in Hybrid Electric Vehicles (HEVs). Among the many aspects that could be investigated regarding the electrification of DCTs, research efforts are undertaken here to the development of control strategies for improving vehicle dynamic performance during gearshifts and the energy management of HEVs. In the first part of the dissertation, control algorithms for upshift and downshift maneuvers are developed for a Plug-in Hybrid Electric Vehicle (PHEV) architecture in which an electric machine
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Cooke, David William. "Powertrain Modeling, Design, and Integration for the World’s Fastest Electric Vehicle." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1431081117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mowry, Andrew Maxwell. "Integration challenges for fast-charging infrastructure to support electric vehicle adoption." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129127.

Der volle Inhalt der Quelle
Annotation:
Thesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, Technology and Policy Program, September, 2020<br>Cataloged from student-submitted PDF version of thesis.<br>Includes bibliographical references (pages 59-64).<br>Highway fast-charging stations located between major population centers are necessary to address consumer charging concerns and thus to support the continued adoption of electric vehicles to meet decarbonization policy targets. Yet such stations, if sized to support anticipated demand, may cau
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kang, Xueying. "Vehicle-infrastructure integration (VII) enabled plug-in hybrid electric vehicles (PHEVS) for traffic and energy management." Connect to this title online, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mohamed, Ahmed A. S. Mr. "Bidirectional Electric Vehicles Service Integration in Smart Power Grid with Renewable Energy Resources." FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3529.

Der volle Inhalt der Quelle
Annotation:
As electric vehicles (EVs) become more popular, the utility companies are forced to increase power generations in the grid. However, these EVs are capable of providing power to the grid to deliver different grid ancillary services in a concept known as vehicle-to-grid (V2G) and grid-to-vehicle (G2V), in which the EV can serve as a load or source at the same time. These services can provide more benefits when they are integrated with Photovoltaic (PV) generation. The proper modeling, design and control for the power conversion systems that provide the optimum integration among the EVs, PV gener
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Bücher zum Thema "Electric vehicle integration"

1

Vahidinasab, Vahid, and Behnam Mohammadi-Ivatloo, eds. Electric Vehicle Integration via Smart Charging. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bayram, İslam Şafak. Plug-in electric vehicle grid integration. Artech House, 2017.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Garcia-Valle, Rodrigo, and João A. Peças Lopes, eds. Electric Vehicle Integration into Modern Power Networks. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-0134-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Garcia-Valle, Rodrigo. Electric Vehicle Integration into Modern Power Networks. Springer New York, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Alam, Mohammad Saad, and Mahesh Krishnamurthy. Electric Vehicle Integration in a Smart Microgrid Environment. CRC Press, 2021. http://dx.doi.org/10.1201/9780367423926.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

National Renewable Energy Laboratory (U.S.), ed. Electric vehicle grid integration for sustainable military installations. National Renewable Energy Laboratory, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Qiuwei Wu. Grid Integration of Electric Vehicles in Open Electricity Markets. John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118568040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ovalle, Andrés, Ahmad Hably, and Seddik Bacha. Grid Optimal Integration of Electric Vehicles: Examples with Matlab Implementation. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73177-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Li, Kang, Yusheng Xue, Shumei Cui, Qun Niu, Zhile Yang, and Patrick Luk, eds. Advanced Computational Methods in Energy, Power, Electric Vehicles, and Their Integration. Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6364-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Armstrong, Lee R. Electronic system integration and systems engineering. Society of Automotive Engineers, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Buchteile zum Thema "Electric vehicle integration"

1

Patel, Arpit J., Chaitali Mehta, Ojaswini A. Sharma, Amit V. Sant, and V. S. K. V. Harish. "Electric vehicle technology." In Renewable Energy Integration with Building Energy Systems. CRC Press, 2022. http://dx.doi.org/10.1201/9781003211587-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Young, Kwo, Caisheng Wang, Le Yi Wang, and Kai Strunz. "Electric Vehicle Battery Technologies." In Electric Vehicle Integration into Modern Power Networks. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0134-6_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Nikowitz, Michael, Steven Boyd, Andrea Vezzini, et al. "System Optimization and Vehicle Integration." In Advanced Hybrid and Electric Vehicles. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26305-2_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Abdi, Hamdi, Maryam Shahbazitabar, and Mansour Moradi. "Operational Challenges of Electric Vehicle Smart Charging." In Electric Vehicle Integration via Smart Charging. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Almeida, P. M. Rocha, F. J. Soares, and João A. Peças Lopes. "Impacts of Large-Scale Deployment of Electric Vehicles in the Electric Power System." In Electric Vehicle Integration into Modern Power Networks. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0134-6_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Aghajan-Eshkevari, Saleh, Mohammad Taghi Ameli, and Sasan Azad. "Electric Vehicle Services to Support the Power Grid." In Electric Vehicle Integration via Smart Charging. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bordons, Carlos, Félix Garcia-Torres, and Miguel A. Ridao. "Demand-Side Management and Electric Vehicle Integration." In Model Predictive Control of Microgrids. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24570-2_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shekari, Mohammadreza, Hamidreza Arasteh, and Vahid Vahidinasab. "Recognition of Electric Vehicles Charging Patterns with Machine Learning Techniques." In Electric Vehicle Integration via Smart Charging. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gandoman, Foad H., Vahid Nasiriyan, Behnam Mohammadi-Ivatloo, and Davood Ahmadian. "The Concept of Li-Ion Battery Control Strategies to Improve Reliability in Electric Vehicle (EV) Applications." In Electric Vehicle Integration via Smart Charging. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Rabiee, Abbas, Andrew Keane, and Alireza Soroudi. "Smart Charging of EVs to Harvest Flexibility for PVs." In Electric Vehicle Integration via Smart Charging. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Electric vehicle integration"

1

Karthick, S., M. Ramesh Babu, R. Leena Rose, and Deepak Arumugam. "Battery Management In Grid Into Vehicle Integration For Smart Electric Vehicles." In 2024 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS). IEEE, 2024. https://doi.org/10.1109/icpects62210.2024.10780214.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Singh, Aditi Ranjan, Anuj Chauhan, Karunesh Srivastava, and Akash Gupta. "Solar Wireless Electric Vehicle Charger with Cooling Fan Integration." In 2024 International Conference on Electrical Electronics and Computing Technologies (ICEECT). IEEE, 2024. http://dx.doi.org/10.1109/iceect61758.2024.10739090.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Masakure, Alex, and Dr Himani Goyal. "Advanced Converter Topologies for Efficient Electric Vehicle-to-Load Integration." In 2024 4th Asian Conference on Innovation in Technology (ASIANCON). IEEE, 2024. https://doi.org/10.1109/asiancon62057.2024.10837808.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Nirala, Pritam Kumar, Amar Kumar Barik, Ravi Bhushan, Kushal M. Jagtap, and Ravi Raushan. "Renewable Power Integration for Electric Vehicle Charging System: A Review." In 2025 IEEE 1st International Conference on Smart and Sustainable Developments in Electrical Engineering (SSDEE). IEEE, 2025. https://doi.org/10.1109/ssdee64538.2025.10968088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kalimuthukumar, S., Raghavendra V, Siva Abinesh M, Ram Charan, Rajesh Yadav, and Munaga Rajesh. "Recommending Favorable Locations for Electric Vehicle Charging Station Placement." In 2024 International Conference on Integration of Emerging Technologies for the Digital World (ICIETDW). IEEE, 2024. https://doi.org/10.1109/icietdw61607.2024.10939620.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Strezoski, Luka, and Izabela Stefani. "Strategic Electric Vehicle Integration: Leveraging Hosting Capacity in Evolving Distribution Grids." In 2024 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE). IEEE, 2024. https://doi.org/10.1109/isgteurope62998.2024.10863418.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

D, Sarathkumar, J. B. Sajin, Murugesan Manivel, T.Jayakumar, S.Ragul, and Sabarish Ponnusamy. "Impact of Electric Vehicle Integration on Power Grids: A Comprehensive Review." In 2025 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS). IEEE, 2025. https://doi.org/10.1109/sceecs64059.2025.10941398.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bennouna, Saad, Itsukyo Yamayoshi, and Edward Del Valle. "Electric Compressor Integration Noise Influence in Battery Electric Vehicles." In Noise & Vibration Conference & Exhibition. SAE International, 2025. https://doi.org/10.4271/2025-01-0075.

Der volle Inhalt der Quelle
Annotation:
&lt;div class="section abstract"&gt;&lt;div class="htmlview paragraph"&gt;Within the automotive industry’s shift to Battery Electric Vehicles, in order to meet the global zero emission target, thermal management systems are key aspects to address. For instance, vehicle cooling requirements are reinforced to take into account the cabin comfort as well as battery management performances.&lt;/div&gt;&lt;div class="htmlview paragraph"&gt;Consequently to the increased cooling requirements, the critical component that is the Electric Drive Compressor, must operate at higher speeds and refrigerant pr
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Solis, Dario, and Chris Schwarz. "Multirate Integration in Hybrid Electric Vehicle Virtual Proving Grounds." In ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/dac-5634.

Der volle Inhalt der Quelle
Annotation:
Abstract In recent years technology development for the design of electric and hybrid-electric vehicle systems has reached a peak, due to ever increasing restrictions on fuel economy and reduced vehicle emissions. An international race among car manufacturers to bring production hybrid-electric vehicles to market has generated a great deal of interest in the scientific community. The design of these systems requires development of new simulation and optimization tools. In this paper, a description of a real-time numerical environment for Virtual Proving Grounds studies for hybrid-electric vehi
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Diaz-Londono, Cesar, Giambattista Gruosso, Paolo Maffezzoni, and Luca Daniel. "Coordination Strategies for Electric Vehicle Chargers Integration in Electrical Grids." In 2022 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2022. http://dx.doi.org/10.1109/vppc55846.2022.10003274.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Electric vehicle integration"

1

Rolufs, Angela, Amelia Trout, Kevin Palmer, Clark Boriack, Bryan Brilhart, and Annette Stumpf. Integration of autonomous electric transport vehicles into a tactical microgrid : final report. Engineer Research and Development Center (U.S.), 2021. http://dx.doi.org/10.21079/11681/42007.

Der volle Inhalt der Quelle
Annotation:
The objective of the Autonomous Transport Innovation (ATI) technical research program is to investigate current gaps and challenges and develop solutions to integrate emerging electric transport vehicles, vehicle autonomy, vehicle-to-grid (V2G) charging and microgrid technologies with military legacy equipment. The ATI research area objectives are to: identify unique military requirements for autonomous transportation technologies; identify currently available technologies that can be adopted for military applications and validate the suitability of these technologies to close need gaps; ident
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rolufs, Angela, Amelia Trout, Kevin Palmer, Clark Boriack, Bryan Brilhart, and Annette Stumpf. Autonomous Transport Innovation (ATI) : integration of autonomous electric vehicles into a tactical microgrid. Engineer Research and Development Center (U.S.), 2021. http://dx.doi.org/10.21079/11681/42160.

Der volle Inhalt der Quelle
Annotation:
The objective of the Autonomous Transport Innovation (ATI) technical research program is to investigate current gaps and challenges then develop solutions to integrate emerging electric transport vehicles, vehicle autonomy, vehicle-to-grid (V2G) charging and microgrid technologies with military legacy equipment. The ATI research area objectives are to: identify unique military requirements for autonomous transportation technologies; identify currently available technologies that can be adopted for military applications and validate the suitability of these technologies to close need gaps; iden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Houston, Samantha, David Reichmuth, and Mark Specht. Harnessing the Power of Electric Vehicles: Integrating Light-Duty EVs with the Grid in California for a Cheaper, More Reliable, Decarbonized Electric System. Union of Concerned Scientists, 2025. https://doi.org/10.47923/2025.15888.

Der volle Inhalt der Quelle
Annotation:
A growing transition away from fossil fuel–powered vehicles to electric vehicles (EVs), and toward more renewable energy on its electricity grid, is helping California make critical reductions in air pollution and heat-trapping emissions. Besides producing no tailpipe emissions, EVs have another benefit: their batteries can act as electricity storage. Vehicle-grid integration (VGI) is the practice of intentionally integrating EVs with the electricity grid through managing the time, rate, or location of charging (V1G) and, in some instances, energy in the battery could be sent to the grid, a pr
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Abdul Hamid, Umar Zakir. Privacy for Software-defined Battery Electric Vehicles. SAE International, 2024. http://dx.doi.org/10.4271/epr2024012.

Der volle Inhalt der Quelle
Annotation:
&lt;div class="section abstract"&gt;&lt;div class="htmlview paragraph"&gt;The integration of software-defined approaches with software-defined battery electric vehicles brings forth challenges related to privacy regulations, such as European Union’s General Data Protection Regulation and Data Act, as well as the California Consumer Privacy Act. Compliance with these regulations poses barriers for foreign brands and startups seeking entry into these markets. Car manufacturers and suppliers, particularly software suppliers, must navigate complex privacy requirements when introducing vehicles to
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhang, Yangjun. Unsettled Topics Concerning Flying Cars for Urban Air Mobility. SAE International, 2021. http://dx.doi.org/10.4271/epr2021011.

Der volle Inhalt der Quelle
Annotation:
Flying cars—as a new type of vehicle for urban air mobility (UAM)—have become an important development trend for the transborder integration of automotive and aeronautical technologies and industries. This article introduces the 100-year history of flying cars, examines the current research status for UAM air buses and air taxis, and discusses the future development trend of intelligent transportation and air-to-land amphibious vehicles. Unsettled Topics Concerning Flying Cars for Urban Air Mobility identifies the major bottlenecks and impediments confronting the development of flying cars, su
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kisacikoglu, Mithat, Jason Harper, Rajendra Kandula, et al. High-Power Electric Vehicle Charging Hub Integration Platform (eCHIP): Design Guidelines and Specifications for DC Distribution-Based Charging Hub. Office of Scientific and Technical Information (OSTI), 2024. http://dx.doi.org/10.2172/2335495.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Monahan, Joseph F. Life-Cycle Cost Modeling to Determine whether Vehicle-to-Grid (V2G) Integration and Ancillary Service Revenue can Generate a Viable Case for Plug-in Electric Drive Vehicles. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada586076.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Moncada, Oscar, Zainab Imran, Connor Vickers, et al. Full-Scale Dynamic Wireless Power Transfer and Pilot Project Implementation. Purdue University, 2024. http://dx.doi.org/10.5703/1288284317744.

Der volle Inhalt der Quelle
Annotation:
Considering the challenges hindering the widespread adoption of electric vehicles (EVs) and heavy-duty electric vehicles(HDEVs), the integration of dynamic wireless power transfer (DWPT) technology into roadways has gained interest. By embedding DWPT components into pavement, electrical power can be delivered to an EV or HDEV as they are in motion. Yet, large-scale implementation depends on further in-depth research, both to explore optimal construction methods and to understand the impact of embedment on the pavement’s resultant behavior. The objective of this project was trifold: (1) design
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Coyner, Kelley, and Jason Bittner. Infrastructure Enablers and Automated Vehicles: Trucking. SAE International, 2022. http://dx.doi.org/10.4271/epr2022017.

Der volle Inhalt der Quelle
Annotation:
While automated trucking developers have established regular commercial shipments, operations and testing remain limited largely to limited-access highways like interstates. This infrastructure provides a platform or operating environment that is highly structured, with generally good road conditions and visible lane markings. To date, these deployments have not included routine movements from hub to hub, whether on or off these limited-access facilities. Benefits such as safety, fuel efficiency, staffing for long-haul trips, and a strengthened supply chain turn enable broader deployment which
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Abdul Hamid, Umar Zakir. Product Governance and Management for Software-defined Battery Electric Vehicles. SAE International, 2024. http://dx.doi.org/10.4271/epr2024025.

Der volle Inhalt der Quelle
Annotation:
&lt;div class="section abstract"&gt;&lt;div class="htmlview paragraph"&gt;In recent years, battery electric vehicles (BEVs) have experienced significant sales growth, marked by advancements in features and market delivery. This evolution intersects with innovative software-defined vehicles, which have transformed automotive supply chains, introducing new BEV brands from both emerging and mature markets. The critical role of software in software-defined battery electric vehicles (SD-BEVs) is pivotal for enhancing user experience and ensuring adherence to rigorous safety, performance, and qualit
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!