Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Electron holes.

Zeitschriftenartikel zum Thema „Electron holes“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Electron holes" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Eliasson, B., and P. K. Shukla. "The dynamics of electron and ion holes in a collisionless plasma." Nonlinear Processes in Geophysics 12, no. 2 (2005): 269–89. http://dx.doi.org/10.5194/npg-12-269-2005.

Der volle Inhalt der Quelle
Annotation:
Abstract. We present a review of recent analytical and numerical studies of the dynamics of electron and ion holes in a collisionless plasma. The new results are based on the class of analytic solutions which were found by Schamel more than three decades ago, and which here work as initial conditions to numerical simulations of the dynamics of ion and electron holes and their interaction with radiation and the background plasma. Our analytic and numerical studies reveal that ion holes in an electron-ion plasma can trap Langmuir waves, due the local electron density depletion associated with th
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Schamel, Hans. "Electron holes, ion holes and double layers." Physics Reports 140, no. 3 (1986): 161–91. http://dx.doi.org/10.1016/0370-1573(86)90043-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

HIRSCH, J. E. "WHY HOLES ARE NOT LIKE ELECTRONS III: HOW HOLES IN THE NORMAL STATE TURN INTO ELECTRONS IN THE SUPERCONDUCTING STATE." International Journal of Modern Physics B 23, no. 14 (2009): 3035–57. http://dx.doi.org/10.1142/s0217979209052765.

Der volle Inhalt der Quelle
Annotation:
In recent work, we discussed the difference between electrons and holes in energy band in solids from a many-particle point of view, originating in the electron–electron interaction,1 and from a single particle point of view, originating in the electron–ion interaction.2 We proposed that superconductivity in solids only occurs when the Fermi level is close to the top of a band (hole carriers), that it originates in "undressing" of carriers from both the electron–electron and the electron–ion interaction, and that as a consequence holes in the normal state behave like electrons in the supercond
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jovanović, D., F. Califano, and F. Pegoraro. "Magnetized electron-whistler holes." Physics Letters A 303, no. 1 (2002): 52–60. http://dx.doi.org/10.1016/s0375-9601(02)01202-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Luque, A., H. Schamel, and R. Fedele. "Quantum corrected electron holes." Physics Letters A 324, no. 2-3 (2004): 185–92. http://dx.doi.org/10.1016/j.physleta.2004.02.049.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Muschietti, L., I. Roth, R. E. Ergun, and C. W. Carlson. "Analysis and simulation of BGK electron holes." Nonlinear Processes in Geophysics 6, no. 3/4 (1999): 211–19. http://dx.doi.org/10.5194/npg-6-211-1999.

Der volle Inhalt der Quelle
Annotation:
Abstract. Recent observations from satellites crossing regions of magnetic-field-aligned electron streams reveal solitary potential structures that move at speeds much greater than the ion acoustic/thermal velocity. The structures appear as positive potential pulses rapidly drifting along the magnetic field, and are electrostatic in their rest frame. We interpret them as BGK electron holes supported by a drifting population of trapped electrons. Using Laplace transforms, we analyse the behavior of one phase-space electron hole. The resulting potential shapes and electron distribution functions
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chiu, Chih-Wei, Yue-Lin Chung, Cheng-Hsueh Yang, Chang-Ting Liu, and Chiun-Yan Lin. "Coulomb decay rates in monolayer doped graphene." RSC Advances 10, no. 4 (2020): 2337–46. http://dx.doi.org/10.1039/c9ra05953a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gulyamov, G., A. G. Gulyamov, A. B. Davlatov, and Kh N. Juraev. "Energy Levels in Nanowires and Nanorods with a Finite Potential Well." Advances in Condensed Matter Physics 2020 (November 7, 2020): 1–12. http://dx.doi.org/10.1155/2020/4945080.

Der volle Inhalt der Quelle
Annotation:
The energy of electrons and holes in cylindrical quantum wires with a finite potential well was calculated by two methods. An analytical expression is approximately determined that allows one to calculate the energy of electrons and holes at the first discrete level in a cylindrical quantum wire. The electron energy was calculated by two methods for cylindrical layers of different radius. In the calculations, the nonparabolicity of the electron energy spectrum is taken into account. The dependence of the effective masses of electrons and holes on the radius of a quantum wires is determined. An
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Treumann, R. A., W. Baumjohann, and R. Pottelette. "Electron-cylotron maser radiation from electron holes: downward current region." Annales Geophysicae 30, no. 1 (2012): 119–30. http://dx.doi.org/10.5194/angeo-30-119-2012.

Der volle Inhalt der Quelle
Annotation:
Abstract. The electron-cyclotron maser emission theory from electron holes is applied to holes generated in the downward current region of the aurora. It is argued that the main background auroral kilometric radiation source may still be located in the upward current region electron-ring (horseshoe) distribution while the fine structure is caused by electron holes predominantly in the downward current region. There the existence of electron holes is well established and electron densities are high enough for substantial maser growth rates. Trapping of radiation by the holes provides strong amp
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hirakata, Hiroyuki, Shigekazu Homma, Hiroki Noda, Shumpei Sakaguchi, and Takahiro Shimada. "Effects of excess electrons/holes on fracture toughness of single-crystal Si." Journal of Applied Physics 133, no. 3 (2023): 035101. http://dx.doi.org/10.1063/5.0123580.

Der volle Inhalt der Quelle
Annotation:
This study demonstrates that bond strength can be enhanced by injecting excess electrons or holes into a material by electron beam irradiation. To determine the effect of excess electrons/holes on the interatomic bond strength, fracture toughness tests were performed on single-crystal Si micropillars under various electron-beam irradiation conditions. The fracture toughness under electron beam irradiation was 4%–11% higher than that under non-irradiated conditions. In particular, an increase in strength was large in tests performed under hole-injection conditions. Furthermore, in first-princip
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Lakhina, G. S., B. T. Tsurutani, and J. Pickett. "Association of Alfvén waves and proton cyclotron waves with electrostatic bipolar pulses: magnetic hole events observed by Polar." Nonlinear Processes in Geophysics 11, no. 2 (2004): 205–13. http://dx.doi.org/10.5194/npg-11-205-2004.

Der volle Inhalt der Quelle
Annotation:
Abstract. Two magnetic hole events observed by Polar on 20 May 1996 when it was in the polar cap/polar cusp boundary layer are studied. Low-frequency waves, consisting of nonlinear Alfvén waves and large amplitude (±14nT peak-to-peak) obliquely propagating proton cyclotron waves (with frequency f~0.6 to 0.7 fcp), accompanied by electric bipolar pulses (electron holes) and electron heating have been observed located within magnetic holes. It is shown that low-frequency waves can provide free energy to drive some high frequency instabilities which saturate by trapping electrons, thus, leading to
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Gu, Yitong, Ting Wang, Yi-na Dong, He Zhang, Di Wu, and Weilin Chen. "Ferroelectric polyoxometalate-modified nano semiconductor TiO2 for increasing electron lifetime and inhibiting electron recombination in dye-sensitized solar cells." Inorganic Chemistry Frontiers 7, no. 17 (2020): 3072–80. http://dx.doi.org/10.1039/d0qi00488j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Treumann, R. A., W. Baumjohann, and R. Pottelette. "Electron-cylotron maser radiation from electron holes: upward current region." Annales Geophysicae 29, no. 10 (2011): 1885–904. http://dx.doi.org/10.5194/angeo-29-1885-2011.

Der volle Inhalt der Quelle
Annotation:
Abstract. Electron holes are suggested to be an important source for generation of electron-cyclotron maser radiation. We demonstrate that electron holes generated in a ring-horseshoe distribution in the auroral-kilometric radiation source region have the capacity to emit band-limited radiation. The radiation is calculated in the proper frame of a circular model hole and shown to be strictly perpendicular in this frame. Its bandwidth under auroral conditions is of the order of ~1 kHz, which is a reasonable value. It is also shown that much of the drift of fine structure in the radiation can be
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Treumann, R. A., and W. Baumjohann. "Magnetic susceptibility from electron holes." Annales Geophysicae 31, no. 7 (2013): 1191–93. http://dx.doi.org/10.5194/angeo-31-1191-2013.

Der volle Inhalt der Quelle
Annotation:
Abstract. A recent theory of magnetic field amplification in electron holes is extended to derive the magnetic susceptibility of an electron-hole gas propagating in a magnetic flux tube along the ambient magnetic field. It is shown that the hole gas behaves diamagnetic adding some small amount to the well-known Landau susceptibility in the hole-carrying volume.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Steinvall, K., Yu V. Khotyaintsev, D. B. Graham, et al. "Multispacecraft Analysis of Electron Holes." Geophysical Research Letters 46, no. 1 (2019): 55–63. http://dx.doi.org/10.1029/2018gl080757.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Piris, Mario, Xabier Lopez, and Jesus M. Ugalde. "Electron-pair density relaxation holes." Journal of Chemical Physics 128, no. 21 (2008): 214105. http://dx.doi.org/10.1063/1.2937456.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

García-Iriepa, Cristina, and Luis Manuel Frutos. "Molecular Switching by Electron Holes." Chem 4, no. 7 (2018): 1488–89. http://dx.doi.org/10.1016/j.chempr.2018.06.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Naveh, Y., and B. Laikhtman. "Magnetotransport of coupled electron-holes." Europhysics Letters (EPL) 55, no. 4 (2001): 545–51. http://dx.doi.org/10.1209/epl/i2001-00450-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Goldman, M. V., D. L. Newman, and R. E. Ergun. "Phase-space holes due to electron and ion beams accelerated by a current-driven potential ramp." Nonlinear Processes in Geophysics 10, no. 1/2 (2003): 37–44. http://dx.doi.org/10.5194/npg-10-37-2003.

Der volle Inhalt der Quelle
Annotation:
Abstract. One-dimensional open-boundary simulations have been carried out in a current-carrying plasma seeded with a neutral density depression and with no initial electric field. These simulations show the development of a variety of nonlinear localized electric field structures: double layers (unipolar localized fields), fast electron phase-space holes (bipolar fields) moving in the direction of electrons accelerated by the double layer and trains of slow alternating electron and ion phase-space holes (wave-like fields) moving in the direction of ions accelerated by the double layer. The pri
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Moskalenko, S. A., M. A. Liberman, B. V. Novikov, E. S. Kiseliova, E. V. Dumanov, and F. Cerbu. "Two-Dimensional Magnetoexcitons in the Fractional Quantum Hall Regime." Ukrainian Journal of Physics 56, no. 10 (2022): 1037. http://dx.doi.org/10.15407/ujpe56.10.1037.

Der volle Inhalt der Quelle
Annotation:
The coplanar electrons and holes in a strong perpendicular magnetic field at low temperatures form magnetoexcitons when theCoulomb interactions between electrons and holes lying on the lowest Landau levels play the main role. However, when the electrons and hole layers are spatially separated, and the Coulomb electron-hole interaction diminishes, a two-dimensional electron gas (2DEG) and a two-dimensional hole gas (2DHG) are formed. Their properties under conditions of the fractional quantum Hall effect can influence the properties of 2D magnetoexcitons. These properties are discussed in the p
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Bandura, H. Ya, I. V. Bilynskyi, and R. Ya Leshko. "Electron and hole spectrum taking into account deformation and polarization in the quantum dot heterostructure InAs/GaAs." Physics and Chemistry of Solid State 24, no. 1 (2023): 146–52. http://dx.doi.org/10.15330/pcss.24.1.146-152.

Der volle Inhalt der Quelle
Annotation:
In the paper InAs spherical quantum dots in a GaAs matrix were investigated. The energies of electrons and holes in single- and multi-band models (with strong, weak, and intermediate spin-orbit interaction) were calculated taking into account both the deformation of the quantum-dot matrix and the polarization charges on the quantum dot surface. The dependence of the energy levels of electrons and holes on the radius of the quantum dot is considered. It is shown that the deformation effects are stronger than polarization for the electron. For holes those effects are opposites. The energies of e
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Singh, N. "Space-time evolution of electron-beam driven electron holes and their effects on the plasma." Nonlinear Processes in Geophysics 10, no. 1/2 (2003): 53–63. http://dx.doi.org/10.5194/npg-10-53-2003.

Der volle Inhalt der Quelle
Annotation:
Abstract. We report here further results from the three-dimensional particle-in-cell simulations of the electron-beam driven electron holes. We focus here on (i) the transformation of oscillatory waves driven by the electron-beam instability into electron holes, (ii) the continued evolution and propagation of electron holes after their formation, including merging of electron holes, and (iii) the effects of the evolution on the plasma density and ion velocity distribution function. We find that initially electron-beam modes with perpendicular wave numbers k^ = 0 and as well as k^ ≠ 0 are drive
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Ghorbanalilu, Mohammad, Elahe Abdollahzadeh, and S. H. Ebrahimnazhad Rahbari. "Particle-in-cell simulation of two stream instability in the non-extensive statistics." Laser and Particle Beams 32, no. 3 (2014): 399–407. http://dx.doi.org/10.1017/s0263034614000275.

Der volle Inhalt der Quelle
Annotation:
AbstractWe have performed extensive one dimensional particle-in-cell (PIC) simulations to explore generation of electrostatic waves driven by two-stream instability (TSI) that arises due to the interaction between two symmetric counterstreaming electron beams. The electron beams are considered to be cold, collisionless and magnetic-field-free in the presence of neutralizing background of static ions. Here, electrons are described by the non-extensive q-distributions of the Tsallis statistics. Results shows that the electron holes structures are different for various q values such that: (i) for
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Li, Zhen, Patrizio Graziosi, and Neophytos Neophytou. "Electron and Hole Mobility of SnO2 from Full-Band Electron–Phonon and Ionized Impurity Scattering Computations." Crystals 12, no. 11 (2022): 1591. http://dx.doi.org/10.3390/cryst12111591.

Der volle Inhalt der Quelle
Annotation:
Mobility is a key parameter for SnO2, which is extensively studied as a practical transparent oxide n-type semiconductor. In experiments, the mobility of electrons in bulk SnO2 single crystals varies from 70 to 260 cm2V−1s−1 at room temperature. Here, we calculate the mobility as limited by electron–phonon and ionized impurity scattering by coupling the Boltzmann transport equation with density functional theory electronic structures. The linearized Boltzmann transport equation is solved numerically beyond the commonly employed constant relaxation-time approximation by taking into account all
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Shukla, Padma Kant, and Bengt Eliasson. "Localization of intense electromagnetic waves in plasmas." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1871 (2008): 1757–69. http://dx.doi.org/10.1098/rsta.2007.2184.

Der volle Inhalt der Quelle
Annotation:
We present theoretical and numerical studies of the interaction between relativistically intense laser light and a two-temperature plasma consisting of one relativistically hot and one cold component of electrons. Such plasmas are frequently encountered in intense laser–plasma experiments where collisionless heating via Raman instabilities leads to a high-energetic tail in the electron distribution function. The electromagnetic waves (EMWs) are governed by the Maxwell equations, and the plasma is governed by the relativistic Vlasov and hydrodynamic equations. Owing to the interaction between t
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Grigorenko, Ilya, and Roman Ya. Kezerashvili. "Superfluidity of electron–hole pairs between two critical temperatures." International Journal of Modern Physics B 29, no. 27 (2015): 1550188. http://dx.doi.org/10.1142/s021797921550188x.

Der volle Inhalt der Quelle
Annotation:
We study a system of spatially separated electrons and holes, assuming the carriers are confined to two parallel planes. The existence of the superfluid state of electron–hole pairs between two critical temperatures is predicted for such system in a case of electron–hole asymmetry caused by the difference in the carrier masses and their chemical potentials. The stability of the superfluid state is studied with respect to the changes of the asymmetry between electrons and holes. It is found that one type of the asymmetry can compensate another one, so the superfluid state is possible in a wide
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Vasko, I. Y., O. V. Agapitov, F. S. Mozer, A. V. Artemyev, V. V. Krasnoselskikh, and J. W. Bonnell. "Diffusive scattering of electrons by electron holes around injection fronts." Journal of Geophysical Research: Space Physics 122, no. 3 (2017): 3163–82. http://dx.doi.org/10.1002/2016ja023337.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Saharia, K., and K. S. Goswami. "Evolution of electron holes in two electron population plasmas." Physics of Plasmas 15, no. 12 (2008): 122311. http://dx.doi.org/10.1063/1.3050065.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Klotins, E. "Finding Electron-Hole Interaction in Quantum Kinetic Framework." Latvian Journal of Physics and Technical Sciences 55, no. 3 (2018): 43–53. http://dx.doi.org/10.2478/lpts-2018-0020.

Der volle Inhalt der Quelle
Annotation:
Abstract The article presents a quantum kinetic framework to study interacting quan¬tum systems. Having the constituting model Hamiltonians of two-band semiconductor and the photoexcited electron-hole pair, their quantum kinetic evolution has been revi-sited. Solution to this nonlinear problem of electron-hole interaction is obtained making use of the self-consistency loop between the densities of photoexcited electrons and holes and the pairwise interaction terms in the constituting model Hamiltonians. In the leading order, this approach supports the required isomorphism between the pairwise
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

SAEKI, Koichi. "Electrostatic Localized Structures and Electron Holes." Journal of Plasma and Fusion Research 78, no. 10 (2002): 1037–42. http://dx.doi.org/10.1585/jspf.78.1037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

van Putten, Maurice H. P. M. "Electron-Positron Outflow from Black Holes." Physical Review Letters 84, no. 17 (2000): 3752–55. http://dx.doi.org/10.1103/physrevlett.84.3752.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Muschietti, L., I. Roth, C. W. Carlson, and R. E. Ergun. "Transverse Instability of Magnetized Electron Holes." Physical Review Letters 85, no. 1 (2000): 94–97. http://dx.doi.org/10.1103/physrevlett.85.94.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Berthomier, M., G. Dubois, and L. Muschietti. "Stability of three-dimensional electron holes." Physics of Plasmas 15, no. 11 (2008): 112901. http://dx.doi.org/10.1063/1.3013452.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Maslov, V., and H. Schamel. "Growing electron holes in drifting plasmas." Physics Letters A 178, no. 1-2 (1993): 171–74. http://dx.doi.org/10.1016/0375-9601(93)90746-m.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Vasko, I. Y., O. V. Agapitov, F. Mozer, A. V. Artemyev, and D. Jovanovic. "Magnetic field depression within electron holes." Geophysical Research Letters 42, no. 7 (2015): 2123–29. http://dx.doi.org/10.1002/2015gl063370.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Norgren, C., M. André, D. B. Graham, Yu V. Khotyaintsev, and A. Vaivads. "Slow electron holes in multicomponent plasmas." Geophysical Research Letters 42, no. 18 (2015): 7264–72. http://dx.doi.org/10.1002/2015gl065390.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Pham, Van Thi Bich, Hao Minh Hoang, Thuy Thi Thanh Nguyen, and Xuan Thi Hong Cao. "Decolorization of textile dyes by TiO2 -based photocatalyst using polyol as electron donor." Science and Technology Development Journal - Natural Sciences 2, no. 5 (2019): 83–89. http://dx.doi.org/10.32508/stdjns.v2i5.782.

Der volle Inhalt der Quelle
Annotation:
Decolorization of textile dyes including 2,6-dichlorophenolindophenol (DCIP), congo red (CR) and methyl orange (MO) by using TiO2-based photocatalyst in the presence of polyols such as glycerol and ethylene glycol was investigated. Polyols were used as sacrificial electron donors (SEDs). The results showed that the polyols improved the rate and yield of a light-induced decolorization of dyes in comparison with a photocatalytic reaction without polyols. A possible reaction mechanism of dye decolorization by the photocatalyst in the presence of electron donors was proposed. TiO2 photocatalyst ab
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

KVON, Z. D., E. B. OLSHANETSKY, D. A. KOZLOV, N. N. MIKHAILOV, and S. A. DVORETSKII. "A NEW TWO-DIMENSIONAL ELECTRON-HOLE SYSTEM." International Journal of Modern Physics B 23, no. 12n13 (2009): 2888–92. http://dx.doi.org/10.1142/s0217979209062499.

Der volle Inhalt der Quelle
Annotation:
A two-dimensional electron-hole system consisting of light high-mobility electrons with a density of Ns = (4 - 7) × 1010 cm -2 and heavier lower-mobility holes with a density Ps = (0.7 - 1.6) × 1011 cm -2 has been discovered in a quantum well based on mercury telluride with the (013) surface orientation. The system exhibits a number of specific magnetotransport properties in both the classical magnetotransport (positive magnetoresistance and sign-variable Hall effect) and the quantum Hall effect regime. These properties are associated with the coexistence of two-dimensional electrons and holes
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Tsurutani, B. T., B. Dasgupta, J. K. Arballo, G. S. Lakhina, and J. S. Pickett. "Magnetic field turbulence, electron heating, magnetic holes, proton cyclotron waves, and the onsets of bipolar pulse (electron hole) events: a possible unifying scenario." Nonlinear Processes in Geophysics 10, no. 1/2 (2003): 27–35. http://dx.doi.org/10.5194/npg-10-27-2003.

Der volle Inhalt der Quelle
Annotation:
Abstract. Two electron heating events have been identified on 20 May 1996 when Polar was in the polar cap/polar cusp boundary layer. The electron heating events were located within magnetic holes/cavities/bubbles and were accompanied by nonlinear ± 14 nT peak-to-peak (f ~ 0.6 to 0.7 fcp) obliquely propagating proton cyclotron waves. The electrons appear to be heated isotropically. Electric bipolar pulse (electron hole) onset events were also detected within the heating events. We propose a scenario which can link the above phenomena. Nonlinear Alfvén waves, generated through cusp magnetic reco
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Guo, Fei, Zhe Liu, Mingfeng Zhu, and Yisong Zheng. "Electron–phonon scattering limited hole mobility at room temperature in a MoS2 monolayer: first-principles calculations." Physical Chemistry Chemical Physics 21, no. 41 (2019): 22879–87. http://dx.doi.org/10.1039/c9cp04418c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Zhou, Jia, and Xiaofeng Zhen. "A theoretical perspective of the enhanced photocatalytic properties achieved by forming tetragonal ZnS/ZnSe hetero-bilayer." Physical Chemistry Chemical Physics 20, no. 15 (2018): 9950–56. http://dx.doi.org/10.1039/c8cp00874d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Hasenburg, Franziska H., Kun-Han Lin, Bas van der Zee, Paul W. M. Blom, Denis Andrienko, and Gert-Jan A. H. Wetzelaer. "Ambipolar charge transport in a non-fullerene acceptor." APL Materials 11, no. 2 (2023): 021105. http://dx.doi.org/10.1063/5.0137073.

Der volle Inhalt der Quelle
Annotation:
Charge transport is one of the key factors in the operation of organic solar cells. Here, we investigate the electron and hole transport in the non-fullerene acceptor (NFA) IT-4F, by a combination of space-charge-limited current measurements and multiscale molecular simulations. The electron and hole mobilities are fairly balanced, amounting to 2.9 × 10−4 cm2 V−1 s−1 for electrons and 2.0 × 10−5 cm2 V−1 s−1 for holes. Orientational ordering and electronic couplings facilitate a better charge-percolating network for electrons than for holes, while ambipolarity itself is due to sufficiently high
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Lee, Geon-Woo, Young-Bok Lee, Dong-Hyun Baek, Jung-Gon Kim, and Ho-Seob Kim. "Raman Scattering Study on the Influence of E-Beam Bombardment on Si Electron Lens." Molecules 26, no. 9 (2021): 2766. http://dx.doi.org/10.3390/molecules26092766.

Der volle Inhalt der Quelle
Annotation:
Microcolumns have a stacked structure composed of an electron emitter, electron lens (source lens), einzel lens, and a deflector manufactured using a micro electro-mechanical system process. The electrons emitted from the tungsten field emitter mostly pass through the aperture holes. However, other electrons fail to pass through because of collisions around the aperture hole. We used Raman scattering measurements and X-ray photoelectron spectroscopy analyses to investigate the influence of electron beam bombardment on a Si electron lens irradiated by acceleration voltages of 0, 20, and 30 keV.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Kamaletdinov, S. R., I. Y. Vasko, A. V. Artemyev, R. Wang, and F. S. Mozer. "Quantifying electron scattering by electrostatic solitary waves in the Earth's bow shock." Physics of Plasmas 29, no. 8 (2022): 082301. http://dx.doi.org/10.1063/5.0097611.

Der volle Inhalt der Quelle
Annotation:
The electrostatic fluctuations are always present in the Earth's bow shock at frequencies above about 100 Hz, but the effects of this wave activity on electron dynamics have not been quantified yet. In this paper, we quantify electron pitch-angle scattering by electrostatic solitary waves, which make up a substantial part of the electrostatic fluctuations in the Earth's bow shock and were recently shown to be predominantly ion holes. We present analytical estimates and test-particle simulations of electron pitch-angle scattering by ion holes typical of the Earth's bow shock and conclude that t
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Xie, Yi, Rongsheng Wang, Xinmin Li, et al. "Energetic Electrons Observed Inside Magnetic Holes in the Magnetotail." Astrophysical Journal 968, no. 2 (2024): 82. http://dx.doi.org/10.3847/1538-4357/ad479f.

Der volle Inhalt der Quelle
Annotation:
Abstract Magnetic holes, characterized as magnetic field depressions, have been widely observed in space plasma. Two large-scale magnetic holes, MH1 and MH2, were reported in this paper and the energetic electrons up to 100 keV were detected for the first time inside both holes. The two holes showed many similar features, comparable spatial scale, temperature and total pressure increase, and energetic electrons up to 100 keV with a power-law distribution inside them. On the other hand, distinct features were also found between these two holes. A potential ion flow vortex was detected inside th
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Трухин, В. Н., А. Д. Буравлев, И. А. Мустафин, Г. Э. Цырлин, J. P. Kakko та H. Lipsanen. "Сверхбыстрая динамика электронно-дырочной плазмы в полупроводниковых нитевидных нанокристаллах -=SUP=-*-=/SUP=-". Физика и техника полупроводников 52, № 1 (2018): 23. http://dx.doi.org/10.21883/ftp.2018.01.45313.40.

Der volle Inhalt der Quelle
Annotation:
AbstractExperimental results obtained in a study of the effect of electron–hole plasma on the generation of terahertz (THz) radiation in semiconductor nanowires grown by metal-organic vapor-phase epitaxy (MOVPE) are presented. It is shown that the temporal dynamics of photoexcited charge carriers in semiconductor nanowires is determined by the transport of carriers, both electrons and holes, and by the time of capture of electrons and holes at surface levels.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Kamaletdinov, S. R., I. Y. Vasko, R. Wang, A. V. Artemyev, E. V. Yushkov, and F. S. Mozer. "Slow electron holes in the Earth's bow shock." Physics of Plasmas 29, no. 9 (2022): 092303. http://dx.doi.org/10.1063/5.0102289.

Der volle Inhalt der Quelle
Annotation:
We present analysis of about one hundred bipolar structures of positive polarity identified in ten quasi-perpendicular crossings of the Earth's bow shock by the Magnetospheric Multiscale spacecraft. The bipolar structures have amplitudes up to a few tenths of local electron temperature, spatial scales of a few local Debye lengths, and plasma frame speeds of the order of local ion-acoustic speed. We argue that the bipolar structures of positive polarity are slow electron holes, rather than ion-acoustic solitons. The electron holes are typically above the transverse instability threshold, which
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Aravindakshan, Harikrishnan, Amar Kakad, Bharati Kakad, and Peter H. Yoon. "Structural Characteristics of Ion Holes in Plasma." Plasma 4, no. 3 (2021): 435–49. http://dx.doi.org/10.3390/plasma4030032.

Der volle Inhalt der Quelle
Annotation:
Ion holes refer to the phase-space structures where the trapped ion density is lower at the center than at the rim. These structures are commonly observed in collisionless plasmas, such as the Earth’s magnetosphere. This paper investigates the role of multiple parameters in the generation and structure of ion holes. We find that the ion-to-electron temperature ratio and the background plasma distribution function of the species play a pivotal role in determining the physical plausibility of ion holes. It is found that the range of width and amplitude that defines the existence of ion holes spl
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Vasko, I. Y., O. V. Agapitov, F. S. Mozer, A. V. Artemyev, and J. F. Drake. "Electron holes in inhomogeneous magnetic field: Electron heating and electron hole evolution." Physics of Plasmas 23, no. 5 (2016): 052306. http://dx.doi.org/10.1063/1.4950834.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

SHUKLA, P. K., and G. E. MORFILL. "Low-frequency electrostatic wave in a metallic electron-hole-ion plasma with nanoparticles." Journal of Plasma Physics 75, no. 5 (2009): 581–85. http://dx.doi.org/10.1017/s0022377809990080.

Der volle Inhalt der Quelle
Annotation:
AbstractWe investigate the dispersion property of a low-frequency electrostatic wave in a dense metallic electron-hole-ion plasma with nanoparticles. The latter are charged due to the field emission, and hence the metallic nanoparticles/nanotubes can be regarded as charged dust rods surrounded by degenerate electrons and holes, and non-degenerate ions. By using a quantum hydrodynamic model for the electrons and holes, we obtain the electron and hole number density perturbations, while the ion and dust rod number density perturbations follow the classical expressions. A dispersion relation for
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!