Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Electrons dynamic“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electrons dynamic" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Electrons dynamic"
Egorov, Vladimir V. „Dynamic Symmetry in Dozy-Chaos Mechanics“. Symmetry 12, Nr. 11 (11.11.2020): 1856. http://dx.doi.org/10.3390/sym12111856.
Der volle Inhalt der QuelleDouis, S., und M. T. Meftah. „Correlation function and electronic spectral line broadening in relativistic plasmas“. Serbian Astronomical Journal, Nr. 186 (2013): 15–23. http://dx.doi.org/10.2298/saj130218002d.
Der volle Inhalt der QuelleYang, Ciann-Dong, und Shiang-Yi Han. „Orbital and Spin Dynamics of Electron’s States Transition in Hydrogen Atom Driven by Electric Field“. Photonics 9, Nr. 9 (02.09.2022): 634. http://dx.doi.org/10.3390/photonics9090634.
Der volle Inhalt der QuelleBrange, Fredrik, Adrian Schmidt, Johannes C. Bayer, Timo Wagner, Christian Flindt und Rolf J. Haug. „Controlled emission time statistics of a dynamic single-electron transistor“. Science Advances 7, Nr. 2 (Januar 2021): eabe0793. http://dx.doi.org/10.1126/sciadv.abe0793.
Der volle Inhalt der QuelleMirzanejhad, S., J. Babaei und R. Nasrollahpour. „Electron sheath dynamic in the laser–foil interaction“. Laser and Particle Beams 34, Nr. 3 (20.06.2016): 440–46. http://dx.doi.org/10.1017/s0263034616000331.
Der volle Inhalt der QuelleZHANG, S. Y., Y. K. HO, Z. CHEN, Y. J. XIE, Z. YAN und J. J. XU. „DYNAMIC TRAJECTORIES OF RELATIVISTIC ELECTRONS INJECTED INTO TIGHTLY-FOCUSED INTENSE LASER FIELDS“. Journal of Nonlinear Optical Physics & Materials 13, Nr. 01 (März 2004): 103–12. http://dx.doi.org/10.1142/s0218863504001785.
Der volle Inhalt der QuelleRyzhii, Maxim, Taiichi Otsuji, Victor Ryzhii, Vladimir Mitin, Michael S. Shur, Georgy Fedorov und Vladimir Leiman. „Dynamic Conductivity and Two-Dimensional Plasmons in Lateral CNT Networks“. International Journal of High Speed Electronics and Systems 26, Nr. 01n02 (17.02.2017): 1740004. http://dx.doi.org/10.1142/s0129156417400043.
Der volle Inhalt der QuelleWili, Nino, Jan Henrik Ardenkjær-Larsen und Gunnar Jeschke. „Reverse dynamic nuclear polarisation for indirect detection of nuclear spins close to unpaired electrons“. Magnetic Resonance 3, Nr. 2 (10.08.2022): 161–68. http://dx.doi.org/10.5194/mr-3-161-2022.
Der volle Inhalt der QuelleIssanova, M. K., S. K. Kodanova, T. S. Ramazanov, N. Kh Bastykova, Zh A. Moldabekov und C. V. Meister. „Classical scattering and stopping power in dense plasmas: the effect of diffraction and dynamic screening“. Laser and Particle Beams 34, Nr. 3 (27.06.2016): 457–66. http://dx.doi.org/10.1017/s026303461600032x.
Der volle Inhalt der QuelleYasuda, Hirotsugu, Loic Ledernez, Fethi Olcaytug und Gerald Urban. „Electron dynamics of low-pressure deposition plasma“. Pure and Applied Chemistry 80, Nr. 9 (01.01.2008): 1883–92. http://dx.doi.org/10.1351/pac200880091883.
Der volle Inhalt der QuelleDissertationen zum Thema "Electrons dynamic"
Licsandru, Erol-Dan. „Dynamic systems for the translocation of water, ions or electrons“. Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS213/document.
Der volle Inhalt der QuelleThe objective of this work is the study of the transport through lipid membranes of water and ions using self-assembled artificial channel structures and the design of nano sized self-assembled organic contacts for macroscale applications: biocathodes.The first part focuses on the transport through membrane bilayers. The objective is to replicate the function of naturally occurring proteins using ureido-hetreocycle compounds. The influence of species composition is assessed versus the supramolecular structure it generates and the link between it and activity. The first chapter treats the transport of ions through the lipid bilayers of large unilamellar vesicles (LUVs), in terms of total activity and selectivity vs. the structure of compounds. The second chapter refers to the transport of water on LUV systems. Here, a combined approach was used in evaluating the channels' activity, by placing them both on the outside of the liposomes but also directly in the lipid layer. Finally the protons transport of these structures was assessed reveling very efficient proton channels. The third chapter has an interdisciplinary approach combining several topics. The triaryl amines (TAAs) have to propriety of forming self-assembled nano sized fibrils when irradiated by the generation of cation-radicals. These present a directional electronic conduction pathway and are reported to display metal-like conductivity. These fibrils, which unravel in the absence of light, provide interesting possibilities as organic nano scale electrical contacts. A matrix of mesoporous silica was created via electrodeposition in order to enclose the TAAs in a confined medium. The novelty of the approach is that the system only has electron conductivity trough the TAAs nano wires while the silica mass is insulating. The resulting device's proprieties were characterized and further it was used as a bio cathode. The biocathodes containing the enzyme Laccase were then tested to prove the functioning of the matrix of nano contacts as the only providers of electrons to the enzyme
Iyer, Venkatraman 1967. „Discretized path integral molecular dynamic simulations with quantum exchange of two electrons in molten potassium chloride“. Thesis, The University of Arizona, 1992. http://hdl.handle.net/10150/278142.
Der volle Inhalt der QuelleCORNIER-QUIQUANDON, MARIANNNE. „Theorie dynamique de la diffraction des electrons rapides par les cristaux et quasicristaux“. Paris 6, 1988. http://www.theses.fr/1988PA066167.
Der volle Inhalt der QuelleLanier, Steven t. „Dynamic Screening via Intense Laser Radiation and Its Effects on Bulk and Surface Plasma Dispersion Relations“. Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1011758/.
Der volle Inhalt der QuelleSchäfer-Bung, Boris, und Mathias Nest. „Correlated dynamics of electrons with reduced two-electron density matrices“. Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2010/4177/.
Der volle Inhalt der QuelleCao, Hui. „Dynamic Effects on Electron Transport in Molecular Electronic Devices“. Doctoral thesis, KTH, Teoretisk kemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12676.
Der volle Inhalt der QuelleQC20100630
Blidberg, Andreas. „Iron Based Materials for Positive Electrodes in Li-ion Batteries : Electrode Dynamics, Electronic Changes, Structural Transformations“. Doctoral thesis, Uppsala universitet, Strukturkemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-317014.
Der volle Inhalt der QuelleGrumbling, Emily Rose. „Electronic Structure, Intermolecular Interactions and Electron Emission Dynamics via Anion Photoelectron Imaging“. Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/195933.
Der volle Inhalt der QuelleOkhrimenko, Albert N. „ULTRAFAST EXCITED STATE RELAXATION DYNAMICS OF ELECTRON DEFICIENT PORPHYRINS: CONFORMATIONAL AND ELECTRONIC FACTORS“. Connect to this title online, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=bgsu1126888140.
Der volle Inhalt der QuelleBiswas, Somnath. „Watching Electrons Move in Metal Oxide Catalysts : Probing Ultrafast Electron Dynamics by Femtosecond Extreme Ultraviolet Reflection-Absorption Spectroscopy“. The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586375150350782.
Der volle Inhalt der QuelleBücher zum Thema "Electrons dynamic"
1939-, Plattner Helmut, Hrsg. Electron microscopy of subcellular dynamics. Boca Raton, Fla: CRC Press, 1989.
Den vollen Inhalt der Quelle finden1939-, Plattner Helmut, Hrsg. Electron microscopy of subcellular dynamics. Boca Raton, Fla: CRC Press, 1989.
Den vollen Inhalt der Quelle findenD, Tóth Klára Ph, und Pungor E, Hrsg. Dynamic characteristics of ion-selective electrodes. Boca Raton, Fla: CRC Press, 1988.
Den vollen Inhalt der Quelle findenDesigning dynamic circuit response. Raleigh, NC: SciTech Pub., 2010.
Den vollen Inhalt der Quelle findenH, McGuire J. Electron correlation dynamics in atomic collisions. Cambridge: Cambridge University Press, 1997.
Den vollen Inhalt der Quelle findenMladenov, Valeri M., und Plamen Ch Ivanov, Hrsg. Nonlinear Dynamics of Electronic Systems. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08672-9.
Der volle Inhalt der QuelleWitte, Johan F. Dynamic Offset Compensated CMOS Amplifiers. Dordrecht: Springer Netherlands, 2009.
Den vollen Inhalt der Quelle findenLenz, Annika. Dynamic Decision Support for Electronic Requirements Negotiations. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-31175-9.
Der volle Inhalt der Quelle1930-, Tsuchida E., Hrsg. Macromolecular complexes: Dynamic interactions and electronic processes. New York, N.Y: VCH Publishers, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Electrons dynamic"
Demel, T., D. Heitmann, P. Grambow und K. Ploog. „Dynamic Excitations of Quantum Dots in AIGaAs-GaAs“. In Localization and Confinement of Electrons in Semiconductors, 51–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84272-6_6.
Der volle Inhalt der QuelleLiu, Wenjian, und Mark R. Hoffmann. „SDS: the ‘static–dynamic–static’ framework for strongly correlated electrons“. In Highlights in Theoretical Chemistry, 141–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-48148-6_13.
Der volle Inhalt der QuelleKotthaus, Jörg P. „Static and Dynamic Conductivity of Inversion Electrons in Lateral Superlattices“. In Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures, 425–26. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-7412-1_24.
Der volle Inhalt der QuelleBarkay, Zahava. „Dynamic Study of Nanodroplet Nucleation and Growth Using Transmitted Electrons in ESEM“. In Lecture Notes in Nanoscale Science and Technology, 51–72. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9472-0_3.
Der volle Inhalt der QuelleHubbard, Joseph B. „Dynamic Processes in Liquids and Selected Topics Related to the Dynamics of Ions and Electrons in Liquids“. In The Liquid State and Its Electrical Properties, 47–88. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-8023-8_3.
Der volle Inhalt der QuelleSong, Yangyang, Yang Guo, Yibo Lei, Ning Zhang und Wenjian Liu. „The Static–Dynamic–Static Family of Methods for Strongly Correlated Electrons: Methodology and Benchmarking“. In Topics in Current Chemistry Collections, 181–236. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07658-9_7.
Der volle Inhalt der QuelleBrette, Romain, Zuzanna Piwkowska, Cyril Monier, José Francisco, Gómez González, Yves Frégnac, Thierry Bal und Alain Destexhe. „Dynamic Clamp with High-Resistance Electrodes Using Active Electrode Compensation In Vitro and In Vivo“. In Dynamic-Clamp, 347–82. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-89279-5_16.
Der volle Inhalt der QuelleGoddard, William A. „Electron Dynamics and Electron Transfer“. In Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile, 1055–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-18778-1_44.
Der volle Inhalt der QuelleLin, Fanglei. „Electron Polarization“. In Polarized Beam Dynamics and Instrumentation in Particle Accelerators, 155–81. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16715-7_6.
Der volle Inhalt der QuelleSchächter, Levi. „Elementary Electron Dynamics“. In Particle Acceleration and Detection, 93–167. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19848-9_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Electrons dynamic"
Mao, Yao-Ting, David Auslander, David Pankow und John Sample. „Estimating Angular Velocity, Attitude Orientation With Controller Design for Three Units CubeSat“. In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-5895.
Der volle Inhalt der QuelleKalinski, Matt. „Dynamic Ferroelectricity of Trojan Electrons on Face-Centered Square Lattice“. In Frontiers in Optics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/fio.2016.jw4a.187.
Der volle Inhalt der QuelleMotte-Tollet, F., M. J. Hubin-Franskin, J. Delwiche und P. Morin. „Relaxation processes following excitation and ionization of the iodine 4d and bromine 3d core electrons in C2H5I and C2H4IBr“. In Synchrotron radiation and dynamic phenomena. AIP, 1992. http://dx.doi.org/10.1063/1.42546.
Der volle Inhalt der QuelleKalinski, Matt. „Dynamic Ferroelectricity of Trojan Electrons on Parallel Regular 2-dimensional Lattices“. In Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jtu2a.10.
Der volle Inhalt der QuelleYu, Meng-Ju, Peter Moroshkin und Jimmy Xu. „Dynamic Symmetry-Breaking and Transverse Photo Response“. In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jw4a.6.
Der volle Inhalt der QuelleYoung, Jeffrey F., und Paul J. Kelly. „Coulomb scattering of hot electrons with electron-hole plasmas in GaAs: quantitative effects of dynamic screening (Invited Paper)“. In Semiconductors '92, herausgegeben von David Yevick. SPIE, 1992. http://dx.doi.org/10.1117/12.60486.
Der volle Inhalt der QuelleKalinski, Matt. „Dynamic Ferroelectricity of Trojan Electrons on Hexagonal Face-Centered 3-Triangular Lattice“. In Frontiers in Optics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/fio.2017.jtu3a.116.
Der volle Inhalt der QuelleJutamulia, Suganda, George M. Stroti, William Seiderman und Joseph Lindmayer. „Hopfield neural network using electron-trapping materials“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.mvv8.
Der volle Inhalt der QuelleRykaczewski, Konrad, Ben White, Jenna Browning, Andrew D. Marshall und Andrei G. Fedorov. „Dynamic Model of Electron Beam Induced Deposition (EBID) of Residual Hydrocarbons in Electron Microscopy“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14955.
Der volle Inhalt der QuelleHuanwen, Zhang. „The Elimination of The Dynamic plash in A picosecond streak image Tube“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/up.1986.wd7.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Electrons dynamic"
Evtushenko, Pavel. Large dynamic range beam diagnostics and beam dynamics studies for high current electron LINACs. Office of Scientific and Technical Information (OSTI), Oktober 2016. http://dx.doi.org/10.2172/1467456.
Der volle Inhalt der QuelleSchutt, Timothy C., und Manoj K. Shukla. Computational Investigation on Interactions Between Some Munitions Compounds and Humic Substances. Engineer Research and Development Center (U.S.), Februar 2021. http://dx.doi.org/10.21079/11681/39703.
Der volle Inhalt der QuelleGonzalez, Daniel G. Dynamic Flaps Electronic Scan Antenna. Fort Belvoir, VA: Defense Technical Information Center, Januar 2000. http://dx.doi.org/10.21236/ada389702.
Der volle Inhalt der QuelleMcNeill, Jason Douglas. Ultrafast dynamics of electrons at interfaces. Office of Scientific and Technical Information (OSTI), Mai 1999. http://dx.doi.org/10.2172/8776.
Der volle Inhalt der QuelleLing, Meng-Chieh. Hot electron dynamics in graphene. Office of Scientific and Technical Information (OSTI), Januar 2011. http://dx.doi.org/10.2172/1048505.
Der volle Inhalt der QuelleMark Maroncelli, Nancy Ryan Gray. Electronic Spectroscopy & Dynamics. Office of Scientific and Technical Information (OSTI), Juni 2010. http://dx.doi.org/10.2172/981408.
Der volle Inhalt der QuelleXiaoyin Guan, Hong Qin, and Nathaniel J. Fisch. Phase-space Dynamics of Runaway Electrons In Tokamaks. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/988884.
Der volle Inhalt der QuelleCaldwell, C. D., A. Menzel und S. P. Frigo. Dynamics of two-electron excitations in helium. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603601.
Der volle Inhalt der QuellePitthan, Rainer. Space Charge Dynamics of Bright Electron Beams. Office of Scientific and Technical Information (OSTI), Mai 2002. http://dx.doi.org/10.2172/799075.
Der volle Inhalt der QuelleReed, B., M. Armstrong, K. Blobaum, N. Browning, A. Burnham, G. Campbell, R. Gee et al. Time Resolved Phase Transitions via Dynamic Transmission Electron Microscopy. Office of Scientific and Technical Information (OSTI), Februar 2007. http://dx.doi.org/10.2172/902321.
Der volle Inhalt der Quelle