Bücher zum Thema „Elliptic method“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Bücher für die Forschung zum Thema "Elliptic method" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Bücher für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Center, Langley Research, ed. Crack-face displacements for embedded elliptic and semi-elliptical surface cracks. National Aeronautics and Space Administration, Langley Research Center, 1989.
Den vollen Inhalt der Quelle findenCenter, Langley Research, ed. Crack-face displacements for embedded elliptic and semi-elliptical surface cracks. National Aeronautics and Space Administration, Langley Research Center, 1989.
Den vollen Inhalt der Quelle findenBottasso, Carlo L. Discontinuous dual-primal mixed finite elements for elliptic problems. National Aeronautics and Space Administration, Langley Research Center, 2000.
Den vollen Inhalt der Quelle findenQuarteroni, Alfio. Domain decomposition preconditioners for the spectral collocation method. National Aeronautics and Space Administration, Langley Research Center, Institute for Computer Applications in Science and Engineering, 1988.
Den vollen Inhalt der Quelle findenPomp, Andreas. The Boundary-Domain Integral Method for Elliptic Systems. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0094576.
Der volle Inhalt der Quelleda Veiga, Lourenço Beirão, Konstantin Lipnikov, and Gianmarco Manzini. The Mimetic Finite Difference Method for Elliptic Problems. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02663-3.
Der volle Inhalt der QuellePomp, Andreas. The boundary-domain integral method for elliptic systems. Springer, 1998.
Den vollen Inhalt der Quelle findenA, Povinelli Louis, and United States. National Aeronautics and Space Administration., eds. Optimal least-squares finite element method for elliptic problems. National Aeronautics and Space Administration, 1991.
Den vollen Inhalt der Quelle findenA, Povinelli Louis, and United States. National Aeronautics and Space Administration., eds. Optimal least-squares finite element method for elliptic problems. National Aeronautics and Space Administration, 1991.
Den vollen Inhalt der Quelle findenA, Povinelli Louis, and United States. National Aeronautics and Space Administration., eds. Optimal least-squares finite element method for elliptic problems. National Aeronautics and Space Administration, 1991.
Den vollen Inhalt der Quelle findenKang, Kab Seok. Covolume-based integrid transfer operator in P1 nonconforming multigrid method. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 2002.
Den vollen Inhalt der Quelle findenŽeníšek, A. Nonlinear elliptic and evolution problems and their finite element approximations. Edited by Whiteman J. R. Academic Press, 1990.
Den vollen Inhalt der Quelle findenSchweitzer, Marc Alexander. A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59325-3.
Der volle Inhalt der QuelleSchweitzer, Marc Alexander. A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations. Springer Berlin Heidelberg, 2003.
Den vollen Inhalt der Quelle findenChang, Sin-Chung. Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor: I, One-step method. National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Den vollen Inhalt der Quelle findenMitchell, William F. A comparison of adaptive refinement techniques for elliptic problems. Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1987.
Den vollen Inhalt der Quelle findenKerkhoven, Thomas. L [infinity] stability of finite element approximations to elliptic gradient equations. Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1988.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., ed. Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor: I, One-step method. National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Den vollen Inhalt der Quelle findenChang, Sin-Chung. Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor: II - two-step method. Lewis Research Center, 1986.
Den vollen Inhalt der Quelle findenSmith, Barry F. Domain decomposition: Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, 1996.
Den vollen Inhalt der Quelle findenLi, Zi-Cai. Global Superconvergence of Finite Elements for Eliptic Equations and Its Applications: Tuo yuan fang cheng you xian fang fa de zheng ti chao shou lian ji qi ying yong. SCIENCE PRESS, 2012.
Den vollen Inhalt der Quelle findenCenter, Langley Research, ed. Shape identification technique for a two-dimensional elliptic system by boundary integral equation method. National Aeronautics and Space Administration, Langley Research Center, 1989.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., ed. Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor. National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., ed. Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor. National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.
Den vollen Inhalt der Quelle findenRüde, Ulrich. Accurate numerical solution of convection-diffusion problems: Final report on Grant I/72342 of Volkswagen Foundation. Publishing House of Institute of Mathematics, 2001.
Den vollen Inhalt der Quelle findenCenter, Langley Research, ed. A gas-kinetic method for hyperbolic-elliptic equations and its application in two-phase fluid flow. National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenCenter, Langley Research, ed. A gas-kinetic method for hyperbolic-elliptic equations and its application in two-phase fluid flow. National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenCenter, Langley Research, ed. A gas-kinetic method for hyperbolic-elliptic equations and its application in two-phase fluid flow. National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenCenter, Langley Research, ed. A gas-kinetic method for hyperbolic-elliptic equations and its application in two-phase fluid flow. National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenXu, Kun. A gas-kinetic method for hyperbolic-elliptic equations and its application in two-phase fluid flow. National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenMikhaĭlov, G. A. Vesovye metody Monte-Karlo. Izd-vo Sibirskogo otd-nii︠a︡ Rossiĭskoĭ akademii nauk, 2000.
Den vollen Inhalt der Quelle findenHong, Zhang, and Langley Research Center, eds. Fourier-Laplace analysis of multigrid waveform relaxation method for hyperbolic equations. National Aeronautics and Space Administration, Langley Research Center, 1996.
Den vollen Inhalt der Quelle findenTaa̓san, Shlomo. Fourier-Laplace analysis of multigrid waveform relaxation method for hyperbolic equations. National Aeronautics and Space Administration, Langley Research Center, 1996.
Den vollen Inhalt der Quelle findenHong, Zhang, and Langley Research Center, eds. Fourier-Laplace analysis of multigrid waveform relaxation method for hyperbolic equations. National Aeronautics and Space Administration, Langley Research Center, 1996.
Den vollen Inhalt der Quelle findenHung, Chang, and Langley Research Center, eds. Fourier-Laplace analysis of multigrid waveform relaxation method for hyperbolic equations. National Aeronautics and Space Administration, Langley Research Center, 1996.
Den vollen Inhalt der Quelle findenDeville, M. O. Fourier analysis of finite element preconditioned collocation schemes. National Aeronautics and Space Administration, Langley Research Center, 1990.
Den vollen Inhalt der Quelle findenDeville, M. O. Fourier analysis of finite element preconditioned collocation schemes. National Aeronautics and Space Administration, Langley Research Center, 1990.
Den vollen Inhalt der Quelle findenMarʹ͡iashkin, N. ͡IA. Reshenie nelineĭnykh ėllipticheskikh kraevykh zadach metodom konechnykh ėlementov. Vychislitelʹnyĭ ͡tsentr AN SSSR, 1988.
Den vollen Inhalt der Quelle finden1939-, Fix George J., Institute for Computer Applications in Science and Engineering., and Langley Research Center, eds. On the accuracy of least squares methods in the presence of corner singularities. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1985.
Den vollen Inhalt der Quelle findenN, Tiwari S., and Langley Research Center, eds. Radiative interactions in chemically reacting compressible nozzle flows using Monte Carlo simulations. Institute for Computational and Applied Mechanics, Old Dominion University, 1994.
Den vollen Inhalt der Quelle findenChen, Wenxiong. Methods on nonlinear elliptic equations. American Institute of Mathematical Sciences, 2010.
Den vollen Inhalt der Quelle findenDer-Chen, Chang, Furutani Kenro, Iwasaki Chisato, and SpringerLink (Online service), eds. Heat Kernels for Elliptic and Sub-elliptic Operators: Methods and Techniques. Springer Science+Business Media, LLC, 2011.
Den vollen Inhalt der Quelle findenBennett, Chow, ed. Elliptic and parabolic methods in geometry. A K Peters, 1996.
Den vollen Inhalt der Quelle findenRoe, John. Elliptic operators, topology, and asymptotic methods. Longman Scientific & Technical, 1988.
Den vollen Inhalt der Quelle findenM, Ainsworth, and EPSRC Numerical Analysis Summer School (7th : 1996 : University of Leicester), eds. Wavelets, multilevel methods, and elliptic PDEs. Clarendon Press, 1997.
Den vollen Inhalt der Quelle findenWidlund, Olof B. Iterative substructuring methods: the general elliptic case. Courant Institute of Mathematical Sciences, New York University, 1986.
Den vollen Inhalt der Quelle findenVeiga, Lourenco Beirao da, Konstantin Lipnikov, and Gianmarco Manzini. Mimetic Finite Difference Method for Elliptic Problems. Springer London, Limited, 2014.
Den vollen Inhalt der Quelle findenVeiga, Lourenco Beirao da, Konstantin Lipnikov, and Gianmarco Manzini. Mimetic Finite Difference Method for Elliptic Problems. Springer International Publishing AG, 2016.
Den vollen Inhalt der Quelle findenCiarlet, Philippe G. The Finite Element Method for Elliptic Problems. Elsevier Science & Technology, 1989.
Den vollen Inhalt der Quelle finden