Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „ENERGY MOLECULES“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "ENERGY MOLECULES" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "ENERGY MOLECULES"
Willich, Marcel M., Lucas Wegener, Johannes Vornweg, Manuel Hohgardt, Julia Nowak, Mario Wolter, Christoph R. Jacob und Peter Jomo Walla. „A new ultrafast energy funneling material harvests three times more diffusive solar energy for GaInP photovoltaics“. Proceedings of the National Academy of Sciences 117, Nr. 52 (14.12.2020): 32929–38. http://dx.doi.org/10.1073/pnas.2019198117.
Der volle Inhalt der QuelleYu, Chang Feng. „A Novel High Precision Analytic Potential Function for Diatomic Molecules“. Key Engineering Materials 645-646 (Mai 2015): 313–18. http://dx.doi.org/10.4028/www.scientific.net/kem.645-646.313.
Der volle Inhalt der QuelleBorodin, Dmitriy, Igor Rahinov, Pranav R. Shirhatti, Meng Huang, Alexander Kandratsenka, Daniel J. Auerbach, Tianli Zhong et al. „Following the microscopic pathway to adsorption through chemisorption and physisorption wells“. Science 369, Nr. 6510 (17.09.2020): 1461–65. http://dx.doi.org/10.1126/science.abc9581.
Der volle Inhalt der QuelleMATSUI, A. H., M. TAKESHIMA, K. MIZUNO und T. AOKI-MATSUMOTO. „PHOTOPHYSICAL OVERVIEW OF EXCITATION ENERGY TRANSFER IN ORGANIC MOLECULAR ASSEMBLIES — A ROUTE TO STUDY BIO-MOLECULAR ARRAYS —“. International Journal of Modern Physics B 15, Nr. 28n30 (10.12.2001): 3857–60. http://dx.doi.org/10.1142/s0217979201008846.
Der volle Inhalt der QuelleMehboob, Muhammad Yasir, Muhammad Usman Khan, Riaz Hussain, Rafia Fatima, Zobia Irshad und Muhammad Adnan. „Designing of near-infrared sensitive asymmetric small molecular donors for high-efficiency organic solar cells“. Journal of Theoretical and Computational Chemistry 19, Nr. 08 (18.09.2020): 2050034. http://dx.doi.org/10.1142/s0219633620500340.
Der volle Inhalt der QuelleMishra, Mirtunjai, Narinder Kumar, Khem Thapa, B. S. Rawat, Reena Dhyani, Devendra Singh und Devesh Kumar. „Physical, chemical, optical and insulating properties of alkyl benzoic acid derivatives liquid crystal due to extension alkyl chain (CNH2N+1) length: A DFT study“. Kragujevac Journal of Science, Nr. 45 (2023): 21–28. http://dx.doi.org/10.5937/kgjsci2345021m.
Der volle Inhalt der QuelleSivanathan, M., und B. Karthikeyan. „Computational Studies of Self Assembled 3,5 Bis(Tri Fluoro Methyl) Benzyl Amine Phenyl Alanine Nano Tubes“. Materials Science Forum 1070 (13.10.2022): 105–13. http://dx.doi.org/10.4028/p-ftw4x6.
Der volle Inhalt der QuelleJungclas, Hartmut, Viacheslav V. Komarov, Anna M. Popova und Lothar Schmidt. „Pyrene Fluorescence in Nanoaggregates Irradiated by IR Photons“. Zeitschrift für Naturforschung A 69, Nr. 12 (01.12.2014): 629–34. http://dx.doi.org/10.5560/zna.2014-0069.
Der volle Inhalt der QuelleGajdoš, Ján, und Tomáš Bleha. „Stability of molecular aggregates of hydrocarbons with all-trans chains and translation of the molecules“. Collection of Czechoslovak Chemical Communications 50, Nr. 7 (1985): 1553–64. http://dx.doi.org/10.1135/cccc19851553.
Der volle Inhalt der QuelleLu, Peifen, Junping Wang, Hui Li, Kang Lin, Xiaochun Gong, Qiying Song, Qinying Ji et al. „High-order above-threshold dissociation of molecules“. Proceedings of the National Academy of Sciences 115, Nr. 9 (13.02.2018): 2049–53. http://dx.doi.org/10.1073/pnas.1719481115.
Der volle Inhalt der QuelleDissertationen zum Thema "ENERGY MOLECULES"
Hoffmeyer, Ruth Ellen. „High-energy electron scattering from molecules“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ35471.pdf.
Der volle Inhalt der QuelleRawi, Zaid. „Rotational energy transfer in polyatomic molecules“. Thesis, University of Sussex, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390073.
Der volle Inhalt der QuellePounds, Andrew J. „A generalized discrete dynamical search method for locating minimum energy molecular geometries“. Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/27144.
Der volle Inhalt der QuelleBall, Christopher D. „Rotational energy transfer in low temperature molecules /“. The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487951214940079.
Der volle Inhalt der QuelleRempe, Susan Lynne Beamis. „Potential energy surfaces for vibrating hexatomic molecules /“. Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8536.
Der volle Inhalt der QuelleShi, Yuanyuan. „Materials and molecules for pollution free clean energy“. Doctoral thesis, Universitat Rovira i Virgili, 2018. http://hdl.handle.net/10803/664725.
Der volle Inhalt der QuelleLa combustión de los combustibles fósiles ha causado problemas medioambientales y energéticos a nivel mundial, lo que influye en la salud y las actividades humanas. Con la motivación de contribuir para resolver estos problemas, hemos realizado una serie de investigaciones para explorar materiales y moléculas para la generación de energía libre de contaminación, como es la energía solar convertida en hidrógeno que propone esta tesis. Hemos analizado estadísticamente las partículas contaminantes en el aire, partículas de PM2.5, las cuales indican que los agregados de hollín ricos en carbono muestran una adhesividad y agregación muy altas. Más del 50% de las partículas PM2.5 interactúan fuertemente con el sustrato a través de una capa muy delgada (<10 nm) de trazas oscura la cual es muy estable incluso bajo estrés mecánico y está compuesta de metales alcalinos, hidrógeno y grupos CH. Después del estudio sobre partículas contaminantes en el aire, nos hemos centrado en el estudio de dispositivos de división de agua mediante radiación solar para explorar la generación de hidrógeno a gran escala. En esta tesis, nos hemos centrado principalmente en la investigación de materiales y moléculas para divisores de moléculas de agua fotoelectroquímicos (PEC) y fotovoltaico-electrolíticos (PV-EC). Nuestros resultados muestran que en los dispositivos PEC, pueden depositarse en la superficie de los foto-ánodos de silicio películas delgadas metálicas de cobre y níquel, pudiendo formar CuO y NiOX respectivamente. Ambos materiales actúan como catalizadores muy activos para la reacción de oxidación de agua y a la vez como una capa protectora de la corrosión para superficie de silicio. Por otro lado, los dispositivos PV-EC, para los que se usó un ánodo basado en moléculas catalizadoras de Rutenio, se ha integrado con células solares de unión triple comerciales. Estos dispositivos han logrado una eficiencia máxima de conversión energía solar-hidrógeno del 21,2% a pH neutro y justo por debajo de la iluminación solar sin ninguna polarización externa. Estos resultados allanan el camino para la generación de hidrógeno por conversión solar a gran escala.
The combustion of the fossil fuels has caused the global environment and energy problems, which influences human health and activities. With the motivation to make our contributions to solving these problems, we have performed a series of investigations to explore materials and molecules for pollution free clean energy, which is solar energy converted hydrogen in this thesis. We have statistically analyzed the airborne pollutant particles, PM2.5 particles, which indicates that the carbon-rich fluffy soot aggregates always show very high adhesiveness and aggregation. And more than 50% PM2.5 particles strongly interact with the substrate through a ultra-thin (< 10 nm) dark trace layer, which is very stable even under mechanical stress and it is consisted of alkali metals, hydrogen and CH groups. After the study about airborne pollutant particles, we have moved to the study of solar-driven water splitting devices for exploring the large-scale generation of hydrogen. In this thesis, we have mainly focused on the investigation of the materials and molecules for photoelectrochemical (PEC) and photovoltaic-electrolysis (PV-EC) water splitting devices. Our results show that in the PEC water splitting devices, copper and nickel metallic thin films can be deposited on the surface of silicon photoanodes, which can form CuO and NiOX respectively and then serve as very active catalysts for water oxidation reaction and a protecting layer for silicon surface from corrosion. And in PV-EC water splitting devices, the ruthenium molecular catalysts based anode has been used for the electrolyzer, which has been integrated with commercially available triple junction solar cells. This integrated PV-EC device achieves the highest solar-to-hydrogen efficiency of 21.2 % at neutral pH and just under solar illumination without any external bias. These results pave the way for the generation of large-scale solar converted hydrogen.
Wickham-Jones, C. T. „Studies of vibrational energy transfer of small molecules“. Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371569.
Der volle Inhalt der QuelleLyons, Benjamin Paul. „Energy transfer to dopant molecules in polyfluorene films“. Thesis, Durham University, 2005. http://etheses.dur.ac.uk/2722/.
Der volle Inhalt der QuelleHock, Kai Meng. „Low energy electron scattering from molecules on surfaces“. Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240119.
Der volle Inhalt der QuelleBarnard, John Cameron. „Low energy electron scattering by ordered adsorbed molecules“. Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321430.
Der volle Inhalt der QuelleBücher zum Thema "ENERGY MOLECULES"
1950-, Scott P. R., Hrsg. Energy levels in atoms and molecules. Oxford: Oxford University Press, 1994.
Den vollen Inhalt der Quelle findenLafferty, Peter. Matter and energy. New York: Macmillan, 1991.
Den vollen Inhalt der Quelle findenWong, Wai-Yeung, Hrsg. Organometallics and Related Molecules for Energy Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46054-2.
Der volle Inhalt der QuelleMay, Volkhard. Charge and energy transfer dynamics in molecular systems. 3. Aufl. Weinheim: Wiley-VCH, 2011.
Den vollen Inhalt der Quelle findenOliver, Kühn, Hrsg. Charge and energy transfer dynamics in molecular systems. 2. Aufl. Weinheim: Wiley-VCH, 2004.
Den vollen Inhalt der Quelle findenOliver, Kühn, Hrsg. Charge and energy transfer dynamics in molecular systems. 3. Aufl. Weinheim: Wiley-VCH, 2011.
Den vollen Inhalt der Quelle findenGroup theory for atoms, molecules, and solids. Englewood Cliffs, N.J: Prentice-Hall International, 1986.
Den vollen Inhalt der Quelle findenJacox, Marilyn E. Vibrational and electronic energy levels of polyatomic transient molecules. Woodbury, N.Y: American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology, 1994.
Den vollen Inhalt der Quelle findenRoman, Curik, Hrsg. Low-energy electron scattering from molecules, biomolecules, and surfaces. Boca Raton: Taylor & Francis, 2012.
Den vollen Inhalt der Quelle findenOliver, Kühn, Hrsg. Charge and energy transfer dynamics in molecular systems: A theoretical introduction. Berlin: Wiley-VCH, 2000.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "ENERGY MOLECULES"
Kajimoto, Okitsugu. „Energy Transfer“. In From Molecules to Molecular Systems, 110–26. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-66868-8_7.
Der volle Inhalt der QuelleGuelachvili, G. „Energy level designations“. In Linear Triatomic Molecules, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/10837166_1.
Der volle Inhalt der QuelleGuelachvili, G. „Energy level designations“. In Linear Triatomic Molecules, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74187-9_1.
Der volle Inhalt der QuelleKhristenko, Sergei V., Viatcheslav P. Shevelko und Alexander I. Maslov. „Energy Constants of Molecules“. In Molecules and Their Spectroscopic Properties, 39–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71946-2_3.
Der volle Inhalt der QuelleGuelachvili, G. „Potential energy function (PEF)“. In Linear Triatomic Molecules, 13–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/10837166_4.
Der volle Inhalt der QuelleGuelachvili, G. „Potential energy function (PEF)“. In Linear Triatomic Molecules, 19–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74187-9_4.
Der volle Inhalt der QuelleBohm, Arno. „Energy Spectra of Some Molecules“. In Quantum Mechanics: Foundations and Applications, 117–58. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-4352-6_3.
Der volle Inhalt der QuelleBohm, Arno, und Mark Loewe. „Energy Spectra of Some Molecules“. In Quantum Mechanics: Foundations and Applications, 117–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-88024-7_3.
Der volle Inhalt der QuelleBohm, Arno. „Energy Spectra of Some Molecules“. In Quantum Mechanics: Foundations and Applications, 117–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-01168-3_3.
Der volle Inhalt der QuelleYurchenko, Sergey. „Kinetic energy operator: Triatomic molecules“. In Computational Spectroscopy of Polyatomic Molecules, 79–100. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9780429154348-4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "ENERGY MOLECULES"
Garcia Ortega, Pablo. „Hadronic Molecules“. In 35th International Conference of High Energy Physics. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.120.0165.
Der volle Inhalt der QuelleHill, Jeffrey R., und Dana D. Dlott. „Vibrational Relaxation and Energy Transfer in Ordered and Disordered Molecular Crystals“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/up.1986.tuf2.
Der volle Inhalt der QuelleQuan, Haiyong, und Zhixiong (James) Guo. „Energy Transfer and Molecule-Radiation Interaction in Optical Microcavities“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14689.
Der volle Inhalt der QuelleOng, Wen Jie, Ellen M. Sletten, Farnaz Niroui, Jeffrey H. Lang, Vladimir Bulovic und Timothy M. Swager. „Electromechanically actuating molecules“. In 2015 Fourth Berkeley Symposium on Energy Efficient Electronic Systems (E3S). IEEE, 2015. http://dx.doi.org/10.1109/e3s.2015.7336809.
Der volle Inhalt der QuelleWolf, H. C. „Molecules for energy transfer and switching“. In Molecular electronics—Science and Technology. AIP, 1992. http://dx.doi.org/10.1063/1.42656.
Der volle Inhalt der QuelleCasado, Juan. „Diradicaloid Organic Molecules in Energy Conversion“. In nanoGe Spring Meeting 2022. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.nsm.2022.237.
Der volle Inhalt der QuelleLiang, Zhi, und Hai-Lung Tsai. „Ab Initio Calculations of Vibrational Energy Levels and Transition Dipole Moments of CO2 Molecules“. In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67765.
Der volle Inhalt der QuelleHarris, C. B., D. J. Russell, K. E. Schultz und J. Z. Zhang. „Energy redistribution in molecules on the femtosecond timescale“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.fj1.
Der volle Inhalt der QuelleBoeckler, Cathrin, Armin Feldhoff und Torsten Oekermann. „Nanostructured ZnO films electrodeposited using monosaccharide molecules as templates“. In Solar Energy + Applications, herausgegeben von Jinghua Guo. SPIE, 2007. http://dx.doi.org/10.1117/12.730630.
Der volle Inhalt der QuelleIvanov, Evgeny, Munetake Nishihara, Igor Adamovich und J. Rich. „Energy Transfer Kinetics of Vibrationally Excited Molecules“. In 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-4514.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "ENERGY MOLECULES"
Chang, Yan-Tyng. Potential energy surfaces and reaction dynamics of polyatomic molecules. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/5926228.
Der volle Inhalt der QuelleChang, Yan-Tyng. Potential energy surfaces and reaction dynamics of polyatomic molecules. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10124759.
Der volle Inhalt der QuelleDavis, Steven J. Rotational Energy Transfer in Metastable States of Heteronuclear Molecules. Fort Belvoir, VA: Defense Technical Information Center, Januar 1989. http://dx.doi.org/10.21236/ada226768.
Der volle Inhalt der QuelleBadgett, Alex, William Xi und Mark Ruth. The Potential for Electrons to Molecules Using Solar Energy. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1819945.
Der volle Inhalt der QuelleDlott, Dana D. Vibrational Energy in Molecules and Nanoparticles: Applications to Energetic Materials. Fort Belvoir, VA: Defense Technical Information Center, Januar 2009. http://dx.doi.org/10.21236/ada495351.
Der volle Inhalt der QuelleLewandowski, Heather. Resonant Energy Transfer in a System of Cold Trapped Molecules. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2011. http://dx.doi.org/10.21236/ada565577.
Der volle Inhalt der QuelleCrim, F. F. Time Resolved Energy Transfer and Photodissociation of Vibrationally Excited Molecules. Fort Belvoir, VA: Defense Technical Information Center, Juni 2007. http://dx.doi.org/10.21236/ada469746.
Der volle Inhalt der QuellePulay, Peter, und Jon Baker. Efficient Modeling of Large Molecules: Geometry Optimization Dynamics and Correlation Energy. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada416248.
Der volle Inhalt der QuelleTanjore, Deepti. Testing molecules that disperse biofilms and biofouling and improve water recycling energy efficiency. Office of Scientific and Technical Information (OSTI), Juni 2020. http://dx.doi.org/10.2172/1633788.
Der volle Inhalt der QuelleRempe, Susan, Josh Vermaas und Emad Tajkhorshid. Coupling Chemical Energy with Protein Conformational Changes to Translocate Small Molecules Across Membranes. Office of Scientific and Technical Information (OSTI), Oktober 2016. http://dx.doi.org/10.2172/1563079.
Der volle Inhalt der Quelle