Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Enhancement techniques“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Enhancement techniques" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Enhancement techniques"
Nemade, Milind U., und Satish K. Shah. „Speech Enhancement Techniques: Quality vs. Intelligibility“. International Journal of Future Computer and Communication 3, Nr. 3 (2014): 216–21. http://dx.doi.org/10.7763/ijfcc.2014.v3.299.
Der volle Inhalt der QuelleKates, James M., und Julian J. Bussgang. „Speech enhancement techniques“. Journal of the Acoustical Society of America 83, Nr. 1 (Januar 1988): 405. http://dx.doi.org/10.1121/1.396211.
Der volle Inhalt der QuelleN B Umashankar, N. B. Umashankar, und Anand Jatti. „Overview of Speech Enhancement Techniques for Various Applications“. Indian Journal of Applied Research 1, Nr. 6 (01.10.2011): 66–67. http://dx.doi.org/10.15373/2249555x/mar2012/21.
Der volle Inhalt der QuelleBharkatiya, M., und RK Nema. „Skin penetration enhancement techniques“. Journal of Young Pharmacists 1, Nr. 2 (2009): 110. http://dx.doi.org/10.4103/0975-1483.55741.
Der volle Inhalt der QuelleMcAndrews, Peter T., und Steven P. Arnoczky. „Meniscal Repair Enhancement Techniques“. Clinics in Sports Medicine 15, Nr. 3 (Juli 1996): 499–510. http://dx.doi.org/10.1016/s0278-5919(20)30108-3.
Der volle Inhalt der QuelleKumar, K. Sravan, Babak Yazdanpanah und Dr G. S. N. Raju. „Performance Comparison of Windowing Techniques for ECG Signal Enhancement“. International Journal of Engineering Research 3, Nr. 12 (01.12.2014): 753–56. http://dx.doi.org/10.17950/ijer/v3s12/1210.
Der volle Inhalt der QuelleSuralkar, S. R., und Seema Rajput. „Enhancement of Images Using Contrast Image Enhancement Techniques“. International Journal Of Recent Advances in Engineering & Technology 08, Nr. 03 (30.03.2020): 16–20. http://dx.doi.org/10.46564/ijraet.2020.v08i03.004.
Der volle Inhalt der QuelleHatif Naji, Zobeda, und A. N. Nazarov. „MEDICAL IMAGE ENHANCEMENT BASED AI TECHNIQUES: A REVIEW“. SYNCHROINFO JOURNAL 8, Nr. 2 (2022): 19–23. http://dx.doi.org/10.36724/2664-066x-2022-8-2-19-23.
Der volle Inhalt der QuelleG., Nirmalapriya. „Comparative Analysis of Underwater and under Exposed Image Enhancement Techniques“. Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (25.07.2020): 192–200. http://dx.doi.org/10.5373/jardcs/v12sp7/20202098.
Der volle Inhalt der QuelleManju, M., und V. Kavitha. „Survey on Fingerprint Enhancement Techniques“. International Journal of Computer Applications 62, Nr. 4 (18.01.2013): 41–47. http://dx.doi.org/10.5120/10072-4682.
Der volle Inhalt der QuelleDissertationen zum Thema "Enhancement techniques"
Krishnan, Gayathri. „Skin penetration enhancement techniques“. Thesis, Curtin University, 2011. http://hdl.handle.net/20.500.11937/1471.
Der volle Inhalt der QuelleKhakifirooz, Ali. „Transport enhancement techniques for nanoscale MOSFETs“. Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/42907.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 155-183).
Over the past two decades, intrinsic MOSFET delay has been scaled commensurate with the scaling of the dimensions. To extend this historical trend in the future, careful analysis of what determines the transistor performance is required. In this work, a new delay metric is first introduced that better captures the interplay of the main technology parameters, and employed to study the historical trends of the performance scaling and to quantify the requirements for the continuous increase of the performance in the future. It is shown that the carrier velocity in the channel has been the main driver for the improved transistor performance with scaling. A roadmapping exercise is presented and it is shown that new channel materials are needed to lever carrier velocity beyond what is achieved with uniaxially strained silicon, along with dramatic reduction in the device parasitics. Such innovations are needed as early as the 32-nm node to avoid the otherwise counter-scaling of the performance. The prospects and limitations of various approaches that are being pursued to increase the carrier velocity and thereby the transistor performance are then explored. After introducing the basics of the transport in nanoscale MOSFETs, the impact of channel material and strain configuration on electron and hole transport are examined. Uniaixal tensile strain in silicon is shown to be very promising to enhance electron transport as long as higher strain levels can be exerted on the device. Calculations and analysis in this work demonstrate that in uniaxially strained silicon, virtual source velocity depends more strongly on the mobility than previously believed and the modulation of the effective mass under uniaxial strain is responsible for this string dependence.
(cont) While III-V semiconductors are seriously limited by their small quantization effective mass, which limits the available inversion charge at a given voltage overdrive, germanium is attractive as it has enhanced transport properties for both electrons and holes. However, to avoid mobility degradation due to carrier confinement as well as L - interband scattering, and to achieve higher ballistic velocity, (111) wafer orientation should be used for Ge NFETs. Further analysis in this work demonstrate that with uniaixally strained Si, hole 3 ballistic velocity enhancement is limited to about 2x, despite the fact that mobility enhancement of about 4x has been demonstrated. Hence, further increase of the strain level does not seem to provide major increase in the device performance. It is also shown that relaxed germanium only marginally improves hole velocity despite the fact that mobility is significantly higher than silicon. Biaxial compressive strain in Ge, although relatively simple to apply, offers only 2x velocity enhancement over relaxed silicon. Only with uniaxial compressive strain, is germanium able to provide significantly higher velocities compared to state-of-the-art silicon MOSFETs. Most recently, germanium has manifested itself as an alternative channel material because of its superior electron and hole mobility compared to silicon. Functional MOS transistors with relatively good electrical characteristics have been demonstrated by several groups on bulk and strained Ge. However, carrier mobility in these devices is still far behind what is theoretically expected from germanium. Very high density of the interface states, especially close to the conduction band is believed to be responsible for poor electrical characteristics of Ge MOSFETs. Nevertheless, a through investigation of the transport in Ge-channel MOSFETs and the correlation between the mobility and trap density has not been undertaken in the past.
(cont) Pulsed I -V and Q-V measurement are performed to characterize near intrinsic transport properties in Ge-channel MOSFETs. Pulsed measurements show that the actual carrier mobility is at least twice what is inferred from DC measurements for Ge NFETs. With phosphorus implantation at the Ge-dielectric interface the difference between DC and pulsed measurements is reduced to about 20%, despite the fact that effects of charge trapping are still visible in these devices. To better understand the dependence of carrier transport on charge trapping, a method to directly measure the inversion charge density by integrating the S/D current is proposed. The density of trapped charges is measured as the difference between the inversion charge density at the beginning and end of pulses applied to the gate. Analysis of temporal variation of trapped charge density reveals that two regimes of fast and slow charge trapping are present. Both mechanisms show a logarithmic dependence on the pulse width, as observed in earlier literature charge-pumping studies of Si MOSFETs with high- dielectrics. The correlation between mobility and density of trapped charges is studied and it is shown that the mobility depends only on the density of fast traps. To our knowledge, this is the first investigation in which the impact of the fast and slow traps on the mobility has been separated. Extrapolation of the mobility-trap relationship to lower densities of trapped charges gives an upper limit on the available mobility with the present gate stack if the density of the fast traps is reduced further. However, this analysis demonstrates that the expected mobility is still far below what is obtained in Si MOSFETs. Further investigations are needed to analyze other mechanisms that might be responsible for poor electron mobility in Ge MOSFETs and thereby optimize the gate stack by suppressing these mechanisms.
by Ali Khakifirooz.
Ph.D.
Williams, Daniel Dee. „Design analysis techniques for software quality enhancement“. Online access for everyone, 2007. http://www.dissertations.wsu.edu/Thesis/Summer2007/d_williams_072407.pdf.
Der volle Inhalt der QuelleAl-Atabany, Walid Ibrahim. „Image enhancement techniques for bioelectronic visual aids“. Thesis, Imperial College London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.528303.
Der volle Inhalt der QuelleDale-Jones, Ralph. „Contrast enhancement using grey scale transformation techniques“. Thesis, University of Warwick, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387342.
Der volle Inhalt der QuelleThái, Minh Thanh 1976. „Resolution enhancement techniques for antenna pattern measurements“. Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/86572.
Der volle Inhalt der QuelleMacCormack, Stuart. „Photorefractive techniques for diode laser brightness enhancement“. Thesis, University of Southampton, 1991. https://eprints.soton.ac.uk/403318/.
Der volle Inhalt der QuelleUllah, Muhammad Obaid Obaid Ullah. „Link enhancement techniques for future multicarrier systems“. Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/link-enhancement-techniques-for-future-multicarrier-systems(255d3239-2ec7-45d5-b3e6-9bd73caa8377).html.
Der volle Inhalt der QuelleCastillo, Solis Maria De los angeles. „Dielectric resonator antennas and bandwidth enhancement techniques“. Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/dielectric-resonator-antennas-and-bandwidth-enhancement-techniques(44b64ce4-dc73-496a-b656-dc4b9c910291).html.
Der volle Inhalt der QuelleMessina, Giuseppe. „Advanced Techniques for Image Analysis and Enhancement“. Thesis, Università degli Studi di Catania, 2011. http://hdl.handle.net/10761/190.
Der volle Inhalt der QuelleLe attivita' di ricerca, descritte in questa tesi, sono state principalmente focalizzate sull'analisi delle immagini ed il miglioramento della qualita'. In particolare la ricerca riguarda lo studio e lo sviluppo di algoritmi di interpolazione del colore, miglioramento del contrasto e rimozione degli occhi rossi, che sono stati esclusivamente sviluppati per l'utilizzo su dispositivi "mobile". Inoltre e' stata documentata un analisi delle immagini per l'identificazione dei falsi e per il miglioramento della qualita' immagini, a fini investigativi (Forensics Image Processing). La tesi e' organizzata in tre parti: Image Processing for Embedded Devices; Image Analysis and Enhancement; Forensics Image Processing.
Bücher zum Thema "Enhancement techniques"
Ahmed, Imran. Pipelined ADC Design and Enhancement Techniques. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8652-5.
Der volle Inhalt der QuelleResolution enhancement techniques in optical lithography. Bellingham, WA: SPIE Optical Engineering Press, 2001.
Den vollen Inhalt der Quelle findenNewell, J. C. W. Archival retrieval: Techniques for image enhancement. London: British Broadcasting Corporation Research and Development Department, 1995.
Den vollen Inhalt der Quelle findenAhmed, Imran. Pipelined ADC design and enhancement techniques. Heidelberg: Springer, 2010.
Den vollen Inhalt der Quelle findenHerb, Parkin, Hrsg. Digital enhancement for landscape photographers. Lewes: Guild of Master Craftsman Publications, 2003.
Den vollen Inhalt der Quelle findenC, Loizou Philipos, Hrsg. Speech enhancement: Theory and practice. Boca Raton, FL: CRC Press, 2007.
Den vollen Inhalt der Quelle findenArad, Nur. Enhancement by image-dependent warping. Palo Alto, CA: Hewlett-Packard Laboratories, Technical Publications Department, 1996.
Den vollen Inhalt der Quelle findenBorisagar, Komal R., Rohit M. Thanki und Bhavin S. Sedani. Speech Enhancement Techniques for Digital Hearing Aids. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-96821-6.
Der volle Inhalt der QuelleSong, Bang-Sup. System-level Techniques for Analog Performance Enhancement. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27921-3.
Der volle Inhalt der QuelleKunche, Prajna, und N. Manikanthababu. Fractional Fourier Transform Techniques for Speech Enhancement. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42746-7.
Der volle Inhalt der QuelleBuchteile zum Thema "Enhancement techniques"
Richards, John A. „Radiometric Enhancement Techniques“. In Remote Sensing Digital Image Analysis, 83–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-02462-1_4.
Der volle Inhalt der QuelleDistante, Arcangelo, und Cosimo Distante. „Image Enhancement Techniques“. In Handbook of Image Processing and Computer Vision, 387–484. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38148-6_9.
Der volle Inhalt der QuelleTieman, David G. „Video Enhancement Techniques“. In Computer Techniques in Neuroanatomy, 285–331. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5691-2_14.
Der volle Inhalt der QuelleRichards, John A. „Radiometric Enhancement Techniques“. In Remote Sensing Digital Image Analysis, 89–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-88087-2_4.
Der volle Inhalt der QuelleRichards, John A., und Xiuping Jia. „Radiometric Enhancement Techniques“. In Remote Sensing Digital Image Analysis, 89–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03978-6_4.
Der volle Inhalt der QuelleSaha, Sujoy Kumar, Manvendra Tiwari, Bengt Sundén und Zan Wu. „Active Techniques“. In Advances in Heat Transfer Enhancement, 111–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29480-3_10.
Der volle Inhalt der QuelleSaha, Sujoy Kumar, Manvendra Tiwari, Bengt Sundén und Zan Wu. „Passive Techniques“. In Advances in Heat Transfer Enhancement, 81–109. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29480-3_9.
Der volle Inhalt der QuelleSaha, Sujoy Kumar, Hrishiraj Ranjan, Madhu Sruthi Emani und Anand Kumar Bharti. „Pool Boiling Enhancement Techniques“. In Two-Phase Heat Transfer Enhancement, 5–41. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20755-7_2.
Der volle Inhalt der QuelleSaha, Sujoy Kumar, Hrishiraj Ranjan, Madhu Sruthi Emani und Anand Kumar Bharti. „Flow Boiling Enhancement Techniques“. In Two-Phase Heat Transfer Enhancement, 43–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20755-7_3.
Der volle Inhalt der QuelleCenteno, Víctor Pérez. „Techniques for entrepreneurial enhancement“. In Neuroscience and Entrepreneurship Research, 52–56. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003057109-14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Enhancement techniques"
Sangeetha, N., und K. Anusudha. „Image defogging using enhancement techniques“. In 2017 International Conference on Computer, Communication and Signal Processing (ICCCSP). IEEE, 2017. http://dx.doi.org/10.1109/icccsp.2017.7944087.
Der volle Inhalt der QuelleShang, Yuping, und Zhongxiang Shen. „Radar cross-section enhancement techniques“. In 2017 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2017. http://dx.doi.org/10.1109/compem.2017.7912846.
Der volle Inhalt der QuelleLi, Mike, und Gordon Roberts. „Testability and reliability enhancement techniques“. In 2014 IEEE Custom Integrated Circuits Conference - CICC 2014. IEEE, 2014. http://dx.doi.org/10.1109/cicc.2014.6946114.
Der volle Inhalt der QuelleLayuan, Li, und Zou Haiming. „Enhancement Techniques Of Infrared Image“. In 29th Annual Technical Symposium, herausgegeben von Richard A. Mollicone und Irving J. Spiro. SPIE, 1985. http://dx.doi.org/10.1117/12.950672.
Der volle Inhalt der QuelleSouissi, Youssef, Jean-Luc Danger, Sami Mekki, Sylvain Guilley und Maxime Nassar. „Techniques for electromagnetic attacks enhancement“. In Technology of Integrated Systems in Nanoscale Era (DTIS). IEEE, 2010. http://dx.doi.org/10.1109/dtis.2010.5487590.
Der volle Inhalt der QuelleHoisie, Adolfy. „Session details: Cache enhancement techniques“. In ICS '09: International Conference on Supercomputing. New York, NY, USA: ACM, 2009. http://dx.doi.org/10.1145/3253769.
Der volle Inhalt der QuelleWicker, Kai, Simon Sindbert und Rainer Heintzmann. „Microscope Resolution enhancement with Image Inversion Interferometry“. In Novel Techniques in Microscopy. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/ntm.2009.nwb1.
Der volle Inhalt der QuelleParthasarathy, Srinivas, und Ivan Tashev. „Convolutional Neural Network Techniques for Speech Emotion Recognition“. In 2018 16th International Workshop on Acoustic Signal Enhancement (IWAENC). IEEE, 2018. http://dx.doi.org/10.1109/iwaenc.2018.8521333.
Der volle Inhalt der QuelleJarande, Supriya S., Premanand K. Kadbe und Anil W. Bhagat. „Comparative analysis of image enhancement techniques“. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE, 2016. http://dx.doi.org/10.1109/iceeot.2016.7755249.
Der volle Inhalt der QuelleJarande, Supriya S., Premanand K. Kadbe und Anil W. Bhagat. „Comparative analysis of image enhancement techniques“. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE, 2016. http://dx.doi.org/10.1109/iceeot.2016.7755584.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Enhancement techniques"
Lowery, P. S., J. Luey, D. K. Seiler, J. S. Tixier und C. L. Timmerman. Depth enhancement techniques for the in situ vitrification process. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/28246.
Der volle Inhalt der QuelleShin, Jun Seob. Novel techniques for image quality enhancement in ultrasound imaging tomography. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1215813.
Der volle Inhalt der QuelleJensen, M. K., und B. Shome. Literature survey of heat transfer enhancement techniques in refrigeration applications. Office of Scientific and Technical Information (OSTI), Mai 1994. http://dx.doi.org/10.2172/10174019.
Der volle Inhalt der QuelleBaker, J. E. Image accuracy and representational enhancement through low-level, multi-sensor integration techniques. Office of Scientific and Technical Information (OSTI), Mai 1993. http://dx.doi.org/10.2172/10162325.
Der volle Inhalt der QuelleGiddings, Thomas, Cetin Savkli und Joseph Shirron. Image Enhancement and Automated Target Recognition Techniques for Underwater Electro-Optic Imagery. Fort Belvoir, VA: Defense Technical Information Center, Januar 2006. http://dx.doi.org/10.21236/ada521885.
Der volle Inhalt der QuelleLopez, Jose E., Juei C. Lo und Jennifer Saulnier. Vehicle Signal Enhancement Using Packet Wavelet Transform and Nonlinear Noise Processing Techniques. Fort Belvoir, VA: Defense Technical Information Center, Januar 1999. http://dx.doi.org/10.21236/ada393635.
Der volle Inhalt der QuelleGiddings, Thomas, Cetin Savkli und Joseph Shirron. Image Enhancement and Automated Target Recognition Techniques for Underwater Electro-Optic Imagery. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada546856.
Der volle Inhalt der QuelleAl-kanan, Haider. Power Efficiency Enhancement and Linearization Techniques for Power Amplifiers in Wireless Communications. Portland State University Library, März 2020. http://dx.doi.org/10.15760/etd.7287.
Der volle Inhalt der QuelleBaker, J. E. Image accuracy and representational enhancement through low-level, multi-sensor integration techniques. Office of Scientific and Technical Information (OSTI), Mai 1993. http://dx.doi.org/10.2172/7368508.
Der volle Inhalt der QuelleMeyer, Matthew W. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis. Office of Scientific and Technical Information (OSTI), Januar 2013. http://dx.doi.org/10.2172/1082977.
Der volle Inhalt der Quelle