Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „ENSEMBLE LEARNING TECHNIQUE“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "ENSEMBLE LEARNING TECHNIQUE" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "ENSEMBLE LEARNING TECHNIQUE"
ACOSTA-MENDOZA, NIUSVEL, ALICIA MORALES-REYES, HUGO JAIR ESCALANTE und ANDRÉS GAGO-ALONSO. „LEARNING TO ASSEMBLE CLASSIFIERS VIA GENETIC PROGRAMMING“. International Journal of Pattern Recognition and Artificial Intelligence 28, Nr. 07 (14.10.2014): 1460005. http://dx.doi.org/10.1142/s0218001414600052.
Der volle Inhalt der QuelleReddy, S. Pavan Kumar, und U. Sesadri. „A Bootstrap Aggregating Technique on Link-Based Cluster Ensemble Approach for Categorical Data Clustering“. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 10, Nr. 8 (30.08.2013): 1913–21. http://dx.doi.org/10.24297/ijct.v10i8.1468.
Der volle Inhalt der QuelleGoyal, Jyotsana. „IMPROVING CLASSIFICATION PERFORMANCE USING ENSEMBLE LEARNING APPROACH“. BSSS Journal of Computer 14, Nr. 1 (30.06.2023): 63–75. http://dx.doi.org/10.51767/jc1409.
Der volle Inhalt der QuelleCawood, Pieter, und Terence Van Zyl. „Evaluating State-of-the-Art, Forecasting Ensembles and Meta-Learning Strategies for Model Fusion“. Forecasting 4, Nr. 3 (18.08.2022): 732–51. http://dx.doi.org/10.3390/forecast4030040.
Der volle Inhalt der QuelleLenin, Thingbaijam, und N. Chandrasekaran. „Learning from Imbalanced Educational Data Using Ensemble Machine Learning Algorithms“. Webology 18, Special Issue 01 (29.04.2021): 183–95. http://dx.doi.org/10.14704/web/v18si01/web18053.
Der volle Inhalt der QuelleArora, Madhur, Sanjay Agrawal und Ravindra Patel. „Machine Learning Technique for Predicting Location“. International Journal of Electrical and Electronics Research 11, Nr. 2 (30.06.2023): 639–45. http://dx.doi.org/10.37391/ijeer.110254.
Der volle Inhalt der QuelleRahimi, Nouf, Fathy Eassa und Lamiaa Elrefaei. „An Ensemble Machine Learning Technique for Functional Requirement Classification“. Symmetry 12, Nr. 10 (25.09.2020): 1601. http://dx.doi.org/10.3390/sym12101601.
Der volle Inhalt der Quelle., Hartono, Opim Salim Sitompul, Erna Budhiarti Nababan, Tulus ., Dahlan Abdullah und Ansari Saleh Ahmar. „A New Diversity Technique for Imbalance Learning Ensembles“. International Journal of Engineering & Technology 7, Nr. 2.14 (08.04.2018): 478. http://dx.doi.org/10.14419/ijet.v7i2.11251.
Der volle Inhalt der QuelleTeoh, Chin-Wei, Sin-Ban Ho, Khairi Shazwan Dollmat und Chuie-Hong Tan. „Ensemble-Learning Techniques for Predicting Student Performance on Video-Based Learning“. International Journal of Information and Education Technology 12, Nr. 8 (2022): 741–45. http://dx.doi.org/10.18178/ijiet.2022.12.8.1679.
Der volle Inhalt der QuelleHussein, Salam Allawi, Alyaa Abduljawad Mahmood und Emaan Oudah Oraby. „Network Intrusion Detection System Using Ensemble Learning Approaches“. Webology 18, SI05 (30.10.2021): 962–74. http://dx.doi.org/10.14704/web/v18si05/web18274.
Der volle Inhalt der QuelleDissertationen zum Thema "ENSEMBLE LEARNING TECHNIQUE"
King, Michael Allen. „Ensemble Learning Techniques for Structured and Unstructured Data“. Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/51667.
Der volle Inhalt der QuellePh. D.
Nguyen, Thanh Tien. „Ensemble Learning Techniques and Applications in Pattern Classification“. Thesis, Griffith University, 2017. http://hdl.handle.net/10072/366342.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Information and Communication Technology
Science, Environment, Engineering and Technology
Full Text
Valenzuela, Russell. „Predicting National Basketball Association Game Outcomes Using Ensemble Learning Techniques“. Thesis, California State University, Long Beach, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10980443.
Der volle Inhalt der QuelleThere have been a number of studies that try to predict sporting event outcomes. Most previous research has involved results in football and college basketball. Recent years has seen similar approaches carried out in professional basketball. This thesis attempts to build upon existing statistical techniques and apply them to the National Basketball Association using a synthesis of algorithms as motivation. A number of ensemble learning methods will be utilized and compared in hopes of improving the accuracy of single models. Individual models used in this thesis will be derived from Logistic Regression, Naïve Bayes, Random Forests, Support Vector Machines, and Artificial Neural Networks while aggregation techniques include Bagging, Boosting, and Stacking. Data from previous seasons and games from both?players and teams will be used to train models in R.
Johansson, Alfred. „Ensemble approach to code smell identification : Evaluating ensemble machine learning techniques to identify code smells within a software system“. Thesis, Tekniska Högskolan, Jönköping University, JTH, Datateknik och informatik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-49319.
Der volle Inhalt der QuelleRecamonde-Mendoza, Mariana. „Exploring ensemble learning techniques to optimize the reverse engineering of gene regulatory networks“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/95693.
Der volle Inhalt der QuelleIn this thesis we are concerned about the reverse engineering of gene regulatory networks from post-genomic data, a major challenge in Bioinformatics research. Gene regulatory networks are intricate biological circuits responsible for govern- ing the expression levels (activity) of genes, thereby playing an important role in the control of many cellular processes, including cell differentiation, cell cycle and metabolism. Unveiling the structure of these networks is crucial to gain a systems- level understanding of organisms development and behavior, and eventually shed light on the mechanisms of diseases caused by the deregulation of these cellular pro- cesses. Due to the increasing availability of high-throughput experimental data and the large dimension and complexity of biological systems, computational methods have been essential tools in enabling this investigation. Nonetheless, their perfor- mance is much deteriorated by important computational and biological challenges posed by the scenario. In particular, the noisy and sparse features of biological data turn the network inference into a challenging combinatorial optimization prob- lem, to which current methods fail in respect to the accuracy and robustness of predictions. This thesis aims at investigating the use of ensemble learning tech- niques as means to overcome current limitations and enhance the inference process by exploiting the diversity among multiple inferred models. To this end, we develop computational methods both to generate diverse network predictions and to combine multiple predictions into an ensemble solution, and apply this approach to a number of scenarios with different sources of diversity in order to understand its potential in this specific context. We show that the proposed solutions are competitive with tra- ditional algorithms in the field and improve our capacity to accurately reconstruct gene regulatory networks. Results obtained for the inference of transcriptional and post-transcriptional regulatory networks, two adjacent and complementary layers of the overall gene regulatory network, evidence the efficiency and robustness of our approach, encouraging the consolidation of ensemble systems as a promising methodology to decipher the structure of gene regulatory networks.
Luong, Vu A. „Advanced techniques for classification of non-stationary streaming data and applications“. Thesis, Griffith University, 2022. http://hdl.handle.net/10072/420554.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Info & Comm Tech
Science, Environment, Engineering and Technology
Full Text
Wang, Xian Bo. „A novel fault detection and diagnosis framework for rotating machinery using advanced signal processing techniques and ensemble extreme learning machines“. Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3951596.
Der volle Inhalt der QuelleEtienam, Clement. „Structural and shape reconstruction using inverse problems and machine learning techniques with application to hydrocarbon reservoirs“. Thesis, University of Manchester, 2019. https://www.research.manchester.ac.uk/portal/en/theses/structural-and-shape-reconstruction-using-inverse-problems-and-machine-learning-techniques-with-application-to-hydrocarbon-reservoirs(e21f1030-64e7-4267-b708-b7f0165a5f53).html.
Der volle Inhalt der QuelleTaylor, Farrell R. „Evaluation of Supervised Machine Learning for Classifying Video Traffic“. NSUWorks, 2016. http://nsuworks.nova.edu/gscis_etd/972.
Der volle Inhalt der QuelleVandoni, Jennifer. „Ensemble Methods for Pedestrian Detection in Dense Crowds“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS116/document.
Der volle Inhalt der QuelleThis study deals with pedestrian detection in high- density crowds from a mono-camera system. The detections can be then used both to obtain robust density estimation, and to initialize a tracking algorithm. One of the most difficult challenges is that usual pedestrian detection methodologies do not scale well to high-density crowds, for reasons such as absence of background, high visual homogeneity, small size of the objects, and heavy occlusions. We cast the detection problem as a Multiple Classifier System (MCS), composed by two different ensembles of classifiers, the first one based on SVM (SVM-ensemble) and the second one based on CNN (CNN-ensemble), combined relying on the Belief Function Theory (BFT) to exploit their strengths for pixel-wise classification. SVM-ensemble is composed by several SVM detectors based on different gradient, texture and orientation descriptors, able to tackle the problem from different perspectives. BFT allows us to take into account the imprecision in addition to the uncertainty value provided by each classifier, which we consider coming from possible errors in the calibration procedure and from pixel neighbor's heterogeneity in the image space. However, scarcity of labeled data for specific dense crowd contexts reflects in the impossibility to obtain robust training and validation sets. By exploiting belief functions directly derived from the classifiers' combination, we propose an evidential Query-by-Committee (QBC) active learning algorithm to automatically select the most informative training samples. On the other side, we explore deep learning techniques by casting the problem as a segmentation task with soft labels, with a fully convolutional network designed to recover small objects thanks to a tailored use of dilated convolutions. In order to obtain a pixel-wise measure of reliability about the network's predictions, we create a CNN- ensemble by means of dropout at inference time, and we combine the different obtained realizations in the context of BFT. Finally, we show that the output map given by the MCS can be employed to perform people counting. We propose an evaluation method that can be applied at every scale, providing also uncertainty bounds on the estimated density
Bücher zum Thema "ENSEMBLE LEARNING TECHNIQUE"
Ensemble Machine Learning Cookbook: Over 35 Practical Recipes to Explore Ensemble Machine Learning Techniques Using Python. Packt Publishing, Limited, 2019.
Den vollen Inhalt der Quelle findenShaw, Brian P. Music Assessment for Better Ensembles. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190603144.001.0001.
Der volle Inhalt der QuelleTattar, Prabhanjan Narayanachar. Hands-On Ensemble Learning with R: A beginner's guide to combining the power of machine learning algorithms using ensemble techniques. Packt Publishing - ebooks Account, 2018.
Den vollen Inhalt der Quelle findenRardin, Paul. Building Sound and Skills in the Men’s Chorus at Colleges and Universities in the United States. Herausgegeben von Frank Abrahams und Paul D. Head. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199373369.013.26.
Der volle Inhalt der QuelleLópez, César Pérez. DATA MINING and MACHINE LEARNING. PREDICTIVE TECHNIQUES : ENSEMBLE METHODS, BOOSTING, BAGGING, RANDOM FOREST, DECISION TREES and REGRESSION TREES.: Examples with MATLAB. Lulu Press, Inc., 2021.
Den vollen Inhalt der Quelle findenMcPherson, Gary E., Hrsg. The Oxford Handbook of Music Performance, Volume 2. Oxford University Press, 2022. http://dx.doi.org/10.1093/oxfordhb/9780190058869.001.0001.
Der volle Inhalt der QuelleMcPherson, Gary E., Hrsg. The Oxford Handbook of Music Performance, Volume 2. Oxford University Press, 2022. http://dx.doi.org/10.1093/oxfordhb/9780190058869.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "ENSEMBLE LEARNING TECHNIQUE"
Prasomphan, Sathit. „Ensemble Classification Technique for Cultural Heritage Image“. In Machine Learning and Intelligent Communications, 17–27. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04409-0_3.
Der volle Inhalt der QuelleAnsari, Arsalan Ahmed, Amaan Iqbal und Bibhudatta Sahoo. „Heterogeneous Defect Prediction Using Ensemble Learning Technique“. In Advances in Intelligent Systems and Computing, 283–93. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0199-9_25.
Der volle Inhalt der QuelleMarndi, Ashapurna, und G. K. Patra. „Chlorophyll Prediction Using Ensemble Deep Learning Technique“. In Advances in Intelligent Systems and Computing, 341–49. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2414-1_34.
Der volle Inhalt der QuelleCristin, Rajan, Aravapalli Rama Satish, Tamal Kr Kundu und Balajee Maram. „Malaria Disease Prediction with Ensemble Learning Technique“. In Innovations in Computer Science and Engineering, 519–27. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8987-1_55.
Der volle Inhalt der QuelleRozza, Alessandro, Gabriele Lombardi, Matteo Re, Elena Casiraghi, Giorgio Valentini und Paola Campadelli. „A Novel Ensemble Technique for Protein Subcellular Location Prediction“. In Ensembles in Machine Learning Applications, 151–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22910-7_9.
Der volle Inhalt der QuelleMarndi, Ashapurna, und G. K. Patra. „Atmospheric Temperature Prediction Using Ensemble Deep Learning Technique“. In Advances in Intelligent Systems and Computing, 209–21. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6984-9_18.
Der volle Inhalt der QuelleGanachari, Sreenidhi, und Srinivasa Rao Battula. „Stroke Disease Prediction Using Adaboost Ensemble Learning Technique“. In Communication and Intelligent Systems, 247–60. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2100-3_21.
Der volle Inhalt der QuelleJegadeeswari, K., R. Ragunath und R. Rathipriya. „Missing Data Imputation Using Ensemble Learning Technique: A Review“. In Advances in Intelligent Systems and Computing, 223–36. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3590-9_18.
Der volle Inhalt der QuelleGuidolin, Massimo, und Manuela Pedio. „Sharpening the Accuracy of Credit Scoring Models with Machine Learning Algorithms“. In Data Science for Economics and Finance, 89–115. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66891-4_5.
Der volle Inhalt der QuelleHussain, Farwa Maqbool, und Farhan Hassan Khan. „An Improved Ensemble Based Machine Learning Technique for Efficient Malware Classification“. In Communications in Computer and Information Science, 651–62. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5232-8_56.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "ENSEMBLE LEARNING TECHNIQUE"
Roy, A., R. Mukherjee, S. Moulik und A. Chakrabarti. „Human Fall Prediction Using Ensemble Learning Technique“. In 2022 IEEE International Conference on Consumer Electronics - Taiwan. IEEE, 2022. http://dx.doi.org/10.1109/icce-taiwan55306.2022.9868977.
Der volle Inhalt der QuelleJunaid, Md Iman, und Samit Ari. „Gait Identification using Ensemble Deep Learning Technique“. In 2022 IEEE Silchar Subsection Conference (SILCON). IEEE, 2022. http://dx.doi.org/10.1109/silcon55242.2022.10028846.
Der volle Inhalt der QuelleChawla, Namit, und Mukul Bedwa. „Optimized Ensemble Learning Technique on Wrist Radiographs using Deep Learning“. In 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS). IEEE, 2022. http://dx.doi.org/10.1109/ictacs56270.2022.9988045.
Der volle Inhalt der QuelleVats, Saanidhya, und VNAD Chivukula. „Plant Disease Detection Using DeepNets and Ensemble Technique“. In 2022 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT). IEEE, 2022. http://dx.doi.org/10.1109/icmlant56191.2022.9996468.
Der volle Inhalt der QuelleJayachitra, J., und N. Umarkathaf. „Blood Cancer Identification using Hybrid Ensemble Deep Learning Technique“. In 2023 Second International Conference on Electronics and Renewable Systems (ICEARS). IEEE, 2023. http://dx.doi.org/10.1109/icears56392.2023.10084996.
Der volle Inhalt der QuelleVergos, George, Lazaros Alexios Iliadis, Paraskevi Kritopoulou, Achilleas Papatheodorou, Achilles D. Boursianis, Konstantinos-Iraklis D. Kokkinidis, Maria S. Papadopoulou und Sotirios K. Goudos. „Ensemble Learning Technique for Artificial Intelligence Assisted IVF Applications“. In 2023 12th International Conference on Modern Circuits and Systems Technologies (MOCAST). IEEE, 2023. http://dx.doi.org/10.1109/mocast57943.2023.10176690.
Der volle Inhalt der QuelleHantao Chen, Xiaodong Zhang, Jane You, Guoqiang Han und Le Li. „Dual neural gas based structure ensemble with the bagging technique“. In 2012 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2012. http://dx.doi.org/10.1109/icmlc.2012.6359570.
Der volle Inhalt der QuelleRana, Md Shohel, und Andrew H. Sung. „DeepfakeStack: A Deep Ensemble-based Learning Technique for Deepfake Detection“. In 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). IEEE, 2020. http://dx.doi.org/10.1109/cscloud-edgecom49738.2020.00021.
Der volle Inhalt der QuelleTaha, Wasf A., und Suhad A. Yousif. „Enhancement of text categorization results via an ensemble learning technique“. In THE SECOND INTERNATIONAL SCIENTIFIC CONFERENCE (SISC2021): College of Science, Al-Nahrain University. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0122942.
Der volle Inhalt der QuelleShah, Rishi, Harsh Shah, Swarnendu Bhim, Leena Heistrene und Vivek Pandya. „Short-term Electricity Price Forecasting using Ensemble Machine Learning Technique“. In 2021 1st International Conference in Information and Computing Research (iCORE). IEEE, 2021. http://dx.doi.org/10.1109/icore54267.2021.00045.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "ENSEMBLE LEARNING TECHNIQUE"
Hart, Carl R., D. Keith Wilson, Chris L. Pettit und Edward T. Nykaza. Machine-Learning of Long-Range Sound Propagation Through Simulated Atmospheric Turbulence. U.S. Army Engineer Research and Development Center, Juli 2021. http://dx.doi.org/10.21079/11681/41182.
Der volle Inhalt der QuelleMaher, Nicola, Pedro DiNezio, Antonietta Capotondi und Jennifer Kay. Identifying precursors of daily to seasonal hydrological extremes over the USA using deep learning techniques and climate model ensembles. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769719.
Der volle Inhalt der QuelleLasko, Kristofer, und Elena Sava. Semi-automated land cover mapping using an ensemble of support vector machines with moderate resolution imagery integrated into a custom decision support tool. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42402.
Der volle Inhalt der Quelle