Zeitschriftenartikel zum Thema „ENVIROECONOMIC ANALYSIS“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "ENVIROECONOMIC ANALYSIS" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Kurtgoz, Yusuf, Emrah Deniz und Ilker Turker. „Solar radiation exergy and enviroeconomic analysis for Turkey“. International Journal of Exergy 24, Nr. 2/3/4 (2017): 281. http://dx.doi.org/10.1504/ijex.2017.087675.
Der volle Inhalt der QuelleTurker, Ilker, Emrah Deniz und Yusuf Kurtgoz. „Solar radiation exergy and enviroeconomic analysis for Turkey“. International Journal of Exergy 24, Nr. 2/3/4 (2017): 281. http://dx.doi.org/10.1504/ijex.2017.10008603.
Der volle Inhalt der QuelleRajoria, C. S., Sanjay Agrawal und G. N. Tiwari. „Exergetic and enviroeconomic analysis of novel hybrid PVT array“. Solar Energy 88 (Februar 2013): 110–19. http://dx.doi.org/10.1016/j.solener.2012.11.018.
Der volle Inhalt der QuelleSingh, Dharamveer. „Enviroeconomic and Exergoeconomic Based Analytical Study of Double Slope Solar Distiller Unit Using Al2O3 Nanoparticles“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 6 (30.06.2022): 4475–87. http://dx.doi.org/10.22214/ijraset.2022.44980.
Der volle Inhalt der QuelleGaur, Ankita, und G. N. Tiwari. „Exergoeconomic and Enviroeconomic Analysis of Photovoltaic Modules of Different Solar Cells“. Journal of Solar Energy 2014 (23.04.2014): 1–8. http://dx.doi.org/10.1155/2014/719424.
Der volle Inhalt der QuelleMiskat, Monirul Islam, und Ahmad Rashedi. „Exergy Efficiency and Enviroeconomic Analysis of Solar Photovoltaic Power in Nepal“. Energy Technology 9, Nr. 8 (09.07.2021): 2100093. http://dx.doi.org/10.1002/ente.202100093.
Der volle Inhalt der QuelleAgrawal, Sanjay, und G. N. Tiwari. „Enviroeconomic analysis and energy matrices of glazed hybrid photovoltaic thermal module air collector“. Solar Energy 92 (Juni 2013): 139–46. http://dx.doi.org/10.1016/j.solener.2013.02.019.
Der volle Inhalt der QuelleMishra, R. K., Gagan Chaudhary, Rajesh Tripathi und Rajendra Prasad. „Exergoeconomic and enviroeconomic analysis of semitransparent and opaque photovoltaic (PV) panels: a comparative study“. IOP Conference Series: Materials Science and Engineering 748 (25.02.2020): 012009. http://dx.doi.org/10.1088/1757-899x/748/1/012009.
Der volle Inhalt der QuelleVengadesan, Elumalai, und Ramalingam Senthil. „Experimental thermal performance and enviroeconomic analysis of serpentine flow channeled flat plate solar water collector“. Environmental Science and Pollution Research 29, Nr. 12 (18.10.2021): 17241–59. http://dx.doi.org/10.1007/s11356-021-16985-7.
Der volle Inhalt der QuelleSingh, Devendra, und Ajay Kumar Sharma. „Energy, exergy and enviroeconomic analysis of modified multi-wick basin type inverted absorber solar still“. Journal of Mechanical Science and Technology 36, Nr. 2 (Februar 2022): 1003–13. http://dx.doi.org/10.1007/s12206-022-0146-2.
Der volle Inhalt der QuelleKaveh, Masoud, Ali Heydari, Nader Rahbar und Abdollah Khalesi Doust. „Water production enhancement from the air moisture using nanofluids-experimental investigation and exergo-enviroeconomic analysis“. International Communications in Heat and Mass Transfer 132 (März 2022): 105887. http://dx.doi.org/10.1016/j.icheatmasstransfer.2022.105887.
Der volle Inhalt der QuelleZuhur, Sadık, und İlhan Ceylan. „Energy, Exergy and Enviroeconomic (3E) analysis of concentrated PV and thermal system in the winter application“. Energy Reports 5 (November 2019): 262–70. http://dx.doi.org/10.1016/j.egyr.2019.02.003.
Der volle Inhalt der QuelleSharshir, Swellam W., Mohamed A. Farahat, Abanob Joseph, A. W. Kandeal, M. A. Rozza, Fawzy Abou-Taleb, A. E. Kabeel und Zhanhui Yuan. „Comprehensive thermo-enviroeconomic performance analysis of a preheating-assisted trapezoidal solar still provided with various additives“. Desalination 548 (Februar 2023): 116280. http://dx.doi.org/10.1016/j.desal.2022.116280.
Der volle Inhalt der QuelleSahota, Lovedeep, Shyam und G. N. Tiwari. „Energy matrices, enviroeconomic and exergoeconomic analysis of passive double slope solar still with water based nanofluids“. Desalination 409 (Mai 2017): 66–79. http://dx.doi.org/10.1016/j.desal.2017.01.012.
Der volle Inhalt der QuellePal, Piyush, Rahul Dev, Dhananjay Singh und Amimul Ahsan. „Energy matrices, exergoeconomic and enviroeconomic analysis of modified multi–wick basin type double slope solar still“. Desalination 447 (Dezember 2018): 55–73. http://dx.doi.org/10.1016/j.desal.2018.09.006.
Der volle Inhalt der QuelleRajoria, C. S., Sanjay Agrawal, G. N. Tiwari und G. S. Chaursia. „Exergetic and enviroeconomic analysis of semitransparent PVT array based on optimum air flow configuration and its comparative study“. Solar Energy 122 (Dezember 2015): 1138–45. http://dx.doi.org/10.1016/j.solener.2015.10.020.
Der volle Inhalt der QuelleSaadon, Syamimi, Leon Gaillard, Christophe Menezo und Stéphanie Giroux-Julien. „Exergy, exergoeconomic and enviroeconomic analysis of a building integrated semi-transparent photovoltaic/thermal (BISTPV/T) by natural ventilation“. Renewable Energy 150 (Mai 2020): 981–89. http://dx.doi.org/10.1016/j.renene.2019.11.122.
Der volle Inhalt der QuelleShoeibi, Shahin, Nader Rahbar, Ahad Abedini Esfahlani und Hadi Kargarsharifabad. „Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation“. Renewable Energy 171 (Juni 2021): 227–44. http://dx.doi.org/10.1016/j.renene.2021.02.081.
Der volle Inhalt der QuelleSun, Zhilin, Wenrong Tu, Shibiao Fang und Wenjun Zhong. „Comparison between double slope solar still and fourfold slope solar still: energy, exergy, exergoeconomic, and enviroeconomic evaluation“. Water Supply 22, Nr. 3 (09.12.2021): 2929–45. http://dx.doi.org/10.2166/ws.2021.425.
Der volle Inhalt der QuelleSonawane, Chandrakant, Ali Jawad Alrubaie, Hitesh Panchal, Ali J. Chamkha, Mustafa Musa Jaber, Ankit D. Oza, Sasan Zahmatkesh, Dumitru Doru Burduhos-Nergis und Diana Petronela Burduhos-Nergis. „Investigation on the Impact of Different Absorber Materials in Solar Still Using CFD Simulation—Economic and Environmental Analysis“. Water 14, Nr. 19 (27.09.2022): 3031. http://dx.doi.org/10.3390/w14193031.
Der volle Inhalt der QuelleSingh, Gurjeet, K. Chopra, V. V. Tyagi, A. K. Pandey, Zhenjun Ma und Haoshan Ren. „A comprehensive energy, exergy and enviroeconomic (3-E) analysis with carbon mitigation for multistage evaporation assisted milk powder production unit“. Sustainable Energy Technologies and Assessments 43 (Februar 2021): 100925. http://dx.doi.org/10.1016/j.seta.2020.100925.
Der volle Inhalt der QuelleZhang, Yaxi, Na Zhu, Xudong Zhao, Zhenyu Luo, Pingfang Hu und Fei Lei. „Corrigendum to “Energy performance and enviroeconomic analysis of a novel PV-MCHP-TEG system” [Energy 274 (2023) 1–12/127342]“. Energy 278 (September 2023): 127857. http://dx.doi.org/10.1016/j.energy.2023.127857.
Der volle Inhalt der QuelleBansal, Sarthak, und Dharamveer Singh. „A Comparative Study of Active Solo and Dual Inclined Compound Parabolic Concentrator Collector Solar Stills Based on Exergoeconomic and Enviroeconomic“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 11 (30.11.2022): 524–44. http://dx.doi.org/10.22214/ijraset.2022.47297.
Der volle Inhalt der QuelleUstaoglu, Abid, Bilal Kursuncu, Alaattin Metin Kaya und Hakan Caliskan. „Analysis of vapor compression refrigeration cycle using advanced exergetic approach with Taguchi and ANOVA optimization and refrigerant selection with enviroeconomic concerns by TOPSIS analysis“. Sustainable Energy Technologies and Assessments 52 (August 2022): 102182. http://dx.doi.org/10.1016/j.seta.2022.102182.
Der volle Inhalt der QuelleMalvika, A., U. C. Arunachala und K. Varun. „Sustainable passive cooling strategy for photovoltaic module using burlap fabric-gravity assisted flow: A comparative Energy, exergy, economic, and enviroeconomic analysis“. Applied Energy 326 (November 2022): 120036. http://dx.doi.org/10.1016/j.apenergy.2022.120036.
Der volle Inhalt der QuelleYILDIRIM, Ragıp, und Abdullah YILDIZ. „Energy, environmental and enviroeconomic analysis of the use R134a/R1234yf (10/90) as replace to R134a in a vapor compression cooling system“. International Journal of Energy Applications and Technologies 7, Nr. 4 (31.12.2020): 101–6. http://dx.doi.org/10.31593/ijeat.769962.
Der volle Inhalt der QuelleParsa, Seyed Masoud, Amir Rahbar, Davoud Javadi Y, M. H. Koleini, Masoud Afrand und Majid Amidpour. „Energy-matrices, exergy, economic, environmental, exergoeconomic, enviroeconomic, and heat transfer (6E/HT) analysis of two passive/active solar still water desalination nearly 4000m: Altitude concept“. Journal of Cleaner Production 261 (Juli 2020): 121243. http://dx.doi.org/10.1016/j.jclepro.2020.121243.
Der volle Inhalt der QuelleCaliskan, Hakan, Ibrahim Dincer und Arif Hepbasli. „Exergoeconomic, enviroeconomic and sustainability analyses of a novel air cooler“. Energy and Buildings 55 (Dezember 2012): 747–56. http://dx.doi.org/10.1016/j.enbuild.2012.03.024.
Der volle Inhalt der QuelleCaliskan, Hakan. „Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors“. Renewable and Sustainable Energy Reviews 69 (März 2017): 488–92. http://dx.doi.org/10.1016/j.rser.2016.11.203.
Der volle Inhalt der QuelleSahota, Lovedeep, und G. N. Tiwari. „Exergoeconomic and enviroeconomic analyses of hybrid double slope solar still loaded with nanofluids“. Energy Conversion and Management 148 (September 2017): 413–30. http://dx.doi.org/10.1016/j.enconman.2017.05.068.
Der volle Inhalt der QuelleSingh, Desh Bandhu. „Exergoeconomic and enviroeconomic analyses of N identical photovoltaic thermal integrated double slope solar still“. International Journal of Exergy 23, Nr. 4 (2017): 347. http://dx.doi.org/10.1504/ijex.2017.086170.
Der volle Inhalt der QuelleSingh, Desh Bandhu. „Exergoeconomic and enviroeconomic analyses of N identical photovoltaic thermal integrated double slope solar still“. International Journal of Exergy 23, Nr. 4 (2017): 347. http://dx.doi.org/10.1504/ijex.2017.10007373.
Der volle Inhalt der QuelleYücer, Cem Tahsin, und Arif Hepbasli. „Exergoeconomic and enviroeconomic analyses of a building heating system using SPECO and Lowex methods“. Energy and Buildings 73 (April 2014): 1–6. http://dx.doi.org/10.1016/j.enbuild.2014.01.023.
Der volle Inhalt der QuelleYousef, Mohamed S., Hamdy Hassan und H. Sekiguchi. „Energy, exergy, economic and enviroeconomic (4E) analyses of solar distillation system using different absorbing materials“. Applied Thermal Engineering 150 (März 2019): 30–41. http://dx.doi.org/10.1016/j.applthermaleng.2019.01.005.
Der volle Inhalt der QuelleTiwari, G. N., J. K. Yadav, D. B. Singh, I. M. Al-Helal und Ahmed Mahmod Abdel-Ghany. „Exergoeconomic and enviroeconomic analyses of partially covered photovoltaic flat plate collector active solar distillation system“. Desalination 367 (Juli 2015): 186–96. http://dx.doi.org/10.1016/j.desal.2015.04.010.
Der volle Inhalt der QuelleSingh, Omendra Kumar. „Development of a solar cooking system suitable for indoor cooking and its exergy and enviroeconomic analyses“. Solar Energy 217 (März 2021): 223–34. http://dx.doi.org/10.1016/j.solener.2021.02.007.
Der volle Inhalt der QuelleBandhu Singh, Desh, Gagan Bansal, Jeetendra Kumar Yadav, Navneet Kumar, Sumit Tiwari und Anuj Raturi. „Exergoeconomic and enviroeconomic analyses of single slope solar desalination unit loaded with/without nanofluid: A comprehensive review“. IOP Conference Series: Materials Science and Engineering 748 (25.02.2020): 012031. http://dx.doi.org/10.1088/1757-899x/748/1/012031.
Der volle Inhalt der QuelleKanbur, Baris Burak, Liming Xiang, Swapnil Dubey, Fook Hoong Choo und Fei Duan. „Life cycle-based enviroeconomic and thermal analyses of the inlet air-cooled microturbine systems with liquefied natural gas cold energy“. Journal of Cleaner Production 174 (Februar 2018): 1338–50. http://dx.doi.org/10.1016/j.jclepro.2017.11.046.
Der volle Inhalt der QuelleAkdeniz, Halil Yalcin, Ozgur Balli und Hakan Caliskan. „Energy, exergy, economic, environmental, energy based economic, exergoeconomic and enviroeconomic (7E) analyses of a jet fueled turbofan type of aircraft engine“. Fuel 322 (August 2022): 124165. http://dx.doi.org/10.1016/j.fuel.2022.124165.
Der volle Inhalt der QuelleYousef, Mohamed S., und Hamdy Hassan. „Energy payback time, exergoeconomic and enviroeconomic analyses of using thermal energy storage system with a solar desalination system: An experimental study“. Journal of Cleaner Production 270 (Oktober 2020): 122082. http://dx.doi.org/10.1016/j.jclepro.2020.122082.
Der volle Inhalt der QuelleSingh, D. B., und G. N. Tiwari. „Exergoeconomic, enviroeconomic and productivity analyses of basin type solar stills by incorporating N identical PVT compound parabolic concentrator collectors: A comparative study“. Energy Conversion and Management 135 (März 2017): 129–47. http://dx.doi.org/10.1016/j.enconman.2016.12.039.
Der volle Inhalt der QuelleAygun, Hakan, und Hakan Caliskan. „Environmental and enviroeconomic analyses of two different turbofan engine families considering landing and take-off (LTO) cycle and global warming potential (GWP) approach“. Energy Conversion and Management 248 (November 2021): 114797. http://dx.doi.org/10.1016/j.enconman.2021.114797.
Der volle Inhalt der QuelleCaliskan, Hakan, und Kazutoshi Mori. „Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems“. Energy 128 (Juni 2017): 128–44. http://dx.doi.org/10.1016/j.energy.2017.04.014.
Der volle Inhalt der QuelleDogan, Battal, Abdulvahap Cakmak, Murat Kadir Yesilyurt und Dervis Erol. „Investigation on 1-heptanol as an oxygenated additive with diesel fuel for compression-ignition engine applications: An approach in terms of energy, exergy, exergoeconomic, enviroeconomic, and sustainability analyses“. Fuel 275 (September 2020): 117973. http://dx.doi.org/10.1016/j.fuel.2020.117973.
Der volle Inhalt der QuelleMuthu, Vimala, und Geetha Ramadas. „Performance studies of Bifacial solar photovoltaic module installed at different orientations: Energy, Exergy, Enviroeconomic, and Exergo-Enviroeconomic analysis“. Environmental Science and Pollution Research, 22.03.2023. http://dx.doi.org/10.1007/s11356-023-26406-6.
Der volle Inhalt der QuelleSusanto, Evan Eduard, Agus Saptoro, Perumal Kumar, Angnes Ngieng Tze Tiong, Aditya Putranto und Suherman Suherman. „7E + Q analysis: a new multi-dimensional assessment tool of solar dryer for food and agricultural products“. Environment, Development and Sustainability, 21.05.2023. http://dx.doi.org/10.1007/s10668-023-03341-7.
Der volle Inhalt der QuelleSİNGH, Dharamveer. „Economic, Enviroeconomic Analysis Of Active Solar Still Using Al2O3 Nanoparticles“. International Journal of Thermodynamics, 06.10.2023, 1–9. http://dx.doi.org/10.5541/ijot.1295637.
Der volle Inhalt der QuelleSingh, Dharamveer, Satyaveer Singh, Aakersh Chauhan und Anil Kumar. „Enviroeconomic analysis of hybrid active solar desalination system using nanoparticles“. Journal of Environmental Engineering and Science, 27.07.2023, 1–10. http://dx.doi.org/10.1680/jenes.23.00045.
Der volle Inhalt der QuelleThangaraj, Hariharasudhan, Prince Winston David, Marshal Raj und Gurukarthik Babu Balachandran. „Extensive Energy, Exergy, Economic, Exergoeconomic, Enviroeconomic, and Energy Payback Time Analysis and Investigation on Bifacial Solar Photovoltaic Module with Nonbiodegradable Waste as Reflectors“. Energy Technology, 22.10.2023. http://dx.doi.org/10.1002/ente.202300829.
Der volle Inhalt der QuelleZhang, Yaxi, Na Zhu, Xudong Zhao, Zhenyu Luo, Pingfang Hu und Fei Lei. „Energy Performance and Enviroeconomic Analysis of a Novel Pv-Mchp-Teg System“. SSRN Electronic Journal, 2023. http://dx.doi.org/10.2139/ssrn.4376199.
Der volle Inhalt der Quelle