Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „EPOXY THERMOSETES“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "EPOXY THERMOSETES" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "EPOXY THERMOSETES"
Zhang, Bao Hua, Bin Chen, Hong Xu und Yan Qing Weng. „Study on the Properties of Epoxy Thermosets Cured by ImHBPs under Lower Temperature“. Advanced Materials Research 150-151 (Oktober 2010): 651–54. http://dx.doi.org/10.4028/www.scientific.net/amr.150-151.651.
Der volle Inhalt der QuelleRösel, Uta, und Dietmar Drummer. „Correlation between the Flow and Curing Behavior of Hard Magnetic Fillers in Thermosets and the Magnetic Properties“. Magnetism 1, Nr. 1 (27.11.2021): 37–57. http://dx.doi.org/10.3390/magnetism1010004.
Der volle Inhalt der QuelleRothenhäusler, Florian, und Holger Ruckdaeschel. „l-Arginine as Bio-Based Curing Agent for Epoxy Resins: Temperature-Dependence of Mechanical Properties“. Polymers 14, Nr. 21 (03.11.2022): 4696. http://dx.doi.org/10.3390/polym14214696.
Der volle Inhalt der QuelleQian, Dan, Jiahai Zhou, Jieyuan Zheng, Jun Cao, Jintao Wan und Hong Fan. „Synthesis, Curing Behaviors and Properties of a Bio-Based Trifunctional Epoxy Silicone Modified Epoxy Thermosets“. Polymers 14, Nr. 20 (18.10.2022): 4391. http://dx.doi.org/10.3390/polym14204391.
Der volle Inhalt der QuelleEcochard, Yvan, Mélanie Decostanzi, Claire Negrell, Rodolphe Sonnier und Sylvain Caillol. „Cardanol and Eugenol Based Flame Retardant Epoxy Monomers for Thermostable Networks“. Molecules 24, Nr. 9 (10.05.2019): 1818. http://dx.doi.org/10.3390/molecules24091818.
Der volle Inhalt der QuelleMénard, Raphaël, Claire Negrell-Guirao, Laurent Ferry, Rodolphe Sonnier und Ghislain David. „Synthesis of biobased phosphate flame retardants“. Pure and Applied Chemistry 86, Nr. 11 (01.11.2014): 1637–50. http://dx.doi.org/10.1515/pac-2014-0703.
Der volle Inhalt der QuelleCouture, Guillaume, Lérys Granado, Florent Fanget, Bernard Boutevin und Sylvain Caillol. „Limonene-Based Epoxy: Anhydride Thermoset Reaction Study“. Molecules 23, Nr. 11 (23.10.2018): 2739. http://dx.doi.org/10.3390/molecules23112739.
Der volle Inhalt der QuelleRösel, Uta, und Dietmar Drummer. „Extension of the Application Range of Multipolar Bonded Ring Magnets by Thermosets in Comparison to Thermoplastics“. Magnetism 3, Nr. 1 (20.03.2023): 71–89. http://dx.doi.org/10.3390/magnetism3010007.
Der volle Inhalt der QuelleHan, Xiao, Rui Chen, Mei Yang, Chuanbo Sun, Kun Wang und Yinsong Wang. „Transparent low-flammability epoxy resins using a benzoguanamine-based DOPO derivative“. High Performance Polymers 34, Nr. 2 (13.10.2021): 173–83. http://dx.doi.org/10.1177/09540083211049966.
Der volle Inhalt der QuelleHan, Xiao, Rui Chen, Mei Yang, Chuanbo Sun, Kun Wang und Yinsong Wang. „Transparent low-flammability epoxy resins using a benzoguanamine-based DOPO derivative“. High Performance Polymers 34, Nr. 2 (13.10.2021): 173–83. http://dx.doi.org/10.1177/09540083211049966.
Der volle Inhalt der QuelleDissertationen zum Thema "EPOXY THERMOSETES"
McFadden, Peter Daniel, und Peter Daniel McFadden. „Molecular Engineering of Specialty Thermoset Materials“. Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/626330.
Der volle Inhalt der QuelleFlores, Guillén Marjorie Yusneiry. „Toughness improvement of epoxy thermosets by adding dendritic structures“. Doctoral thesis, Universitat Rovira i Virgili, 2013. http://hdl.handle.net/10803/128206.
Der volle Inhalt der QuelleRusso, Claudio. „Dual-curing thiol-acrylate-epoxy thermosets for functional applications“. Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/672432.
Der volle Inhalt der QuelleHoy en día, cada vez más aplicaciones exigen materiales con un diseño complejo, misión complicada en polímeros termoestables, y por ello el curado dual es una herramienta extremamente útil en el diseño de termoestables. El curado dual se obtiene con una combinación de dos procesos de entrecruzamiento de red secuenciales o simultaneo. Los beneficios del procesado dual se basan en su flexibilidad en el procesado y en la posibilidad de mejorar las propiedades del material curado mediante procesados en una etapa o en multi etapas. En este trabajo, desarrollamos un novedoso sistema de doble curado basado en dos reacciones tipo "clic": la adición de tiol-acrilato de Michael (primera etapa) y la reacción tiol-epoxi (segunda etapa). Aprovechando el sistema desarrollado, se demostró que el procesado mediante curado en dos etapas tenía un gran valor potencial en aplicaciones como uniones adhesivas, puesto que permite un control dimensional preciso de la capa adhesiva y una mayor resistencia adhesiva que el curado en un único paso. Finalmente, el sistema de doble curado tiol-acrilato-epoxi se utilizó para desarrollar polímeros de activación eléctrica con memoria de forma. La capacidad de respuesta/activación eléctrica se obtuvo incorporando una lámina eléctricamente conductora en el polímero con memoria de forma obtenido a partir de un sistema tiol-acrilato-epoxi y aprovechando el procesado dual.
Nowadays, more and more applications demand materials with complex shape designs which is a difficult task when working with thermosetting polymers. Dual-curing processing is an extremely valuable tool for thermosets design. It consists in the combination of two sequential of simultaneous crosslinking process. The benefits of dual-curing processing rely on its processing flexibility and the properties enhancement of cured parts by single- or multi-stage scenarios. In this work, we developed a novel dual-curing system based on two “click” reactions: the thiol-acrylate Michael addition (first stage) and thiol-epoxy reaction (second stage). Exploiting the developed system, dual-curing processing was proved to have high potentiality in adhesive bonding application, allowing accurate dimensional control of the adhesive layer and higher adhesive strength than on-step curing. Finally, thiol-acrylate-epoxy dual-curing system was used to develop electroresponsive shape-memory polymers. The electroresponsive ability was obtained incorporating an electrically conductive layer into a thiol-acrylate-epoxy shape-memory polymer taking advantage of the dual-processing. In this design, the direct heating from external sources (i.e., oven) is replaced by a more efficient internal Joule heating produced in the conductive layer when an controlled voltage is applied. The electro activation of the SME resulted in significantly faster recovery and, using a custom-made thermoelectric control, a precise control of the recovery process was achieved
Kwon, Ojin. „Morphology Development and Fracture Properties of Toughened Epoxy Thermosets“. Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30660.
Der volle Inhalt der QuellePh. D.
Savonnet, Etienne. „Development of bio-based epoxy thermosets for aerospace launchers“. Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0022.
Der volle Inhalt der QuelleToday, most of the epoxy resins produced are derived from bisphenol-A (BPA). However, BPA is subject to strong regulations, particularly because of its recent classification as chemical of very high concern by the European Chemicals Agency (ECHA). In order to anticipate new regulations, ArianeGroup has decided to replace this substance in its applications. The aim of this thesis is to develop new bio-based epoxy thermosets with comparable thermomechanical properties as the ones issued from bisphenol-A-based materials. For this purpose, a bio-platform of epoxy monomers from vanillin, methyl vanillate, 2,6-dimethoxyphenol and eugenol was developed. These precursors were cross-linked with amines used as curing agent to obtain bio-based epoxy networks. The latter demonstrated thermomechanical properties well above the DGEBA-type reference, especially in terms of glass transition temperature (> 300 °C) and char content (> 50%). Finally, the synthesis of bio-based diamines derived from divanillin was developed and enabled the synthesis of fully bio-based epoxy networks with promising thermomechanical properties
Smith, Kiersten M. „Altering an Epoxy-Amine Thermoset's Performance Through Varying Mix Ratios“. DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2195.
Der volle Inhalt der QuelleRohly, Alison Marie. „Improving Sustainability in Protective Coating Systems“. Diss., North Dakota State University, 2019. https://hdl.handle.net/10365/29267.
Der volle Inhalt der QuelleOffice of Naval Research (FAR0025712)
National Center For Preservation Technology and Training, NCPTT (FAR0028305)
EPSCoR/NSF (FAR0030160)
Tomuta, Adrian Marius. „New and improved thermosets based on epoxy resins and dendritic polyesters“. Doctoral thesis, Universitat Rovira i Virgili, 2013. http://hdl.handle.net/10803/129288.
Der volle Inhalt der QuelleEn esta tesis, hemos sintetizado y caracterizado una familia de dihidrazidasque han sido utilizadas en el curado térmico de resinas epoxi (DGEBA). Asimismo, se han sintetizado nuevos poliestereshiperramificados con grupos finales no reactivos como modificantes de resinas epoxi, curadas con dihidrazidas y con anhídridos y se han caracterizado los termoestables obtenidos. También hemos sintetizando estructuras dendríticas tipo estrella con núcleos de poliéster aromáticos y brazos de policaprolactona. Estas estructuras se han utilizado como agentes modificantes de sistemas epoxi/anhídrido y epoxi/triflato de iterbio. Se ha podido demostrar la mejora de la tenacidad en los materiales termoestables y de su degradabilidad química, manteniendo sus buenas características termomecánicas.
Park, In. „Mesostructured silica for the reinforcement of thermoset epoxy polymers“. Diss., Connect to online resource - MSU authorized users, 2006.
Den vollen Inhalt der Quelle findende, Souza Lucio R. „SYNTHESIS AND APPLICATION OFHIGH PERFORMANCE BENZOXAZINE-EPOXY COPOLYMERS“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1618528984888642.
Der volle Inhalt der QuelleBücher zum Thema "EPOXY THERMOSETES"
J, Bowles Kenneth, und United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., Hrsg. A predictive model for failure properties of thermoset resins. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.
Den vollen Inhalt der Quelle findenBaumgartner, William G., und Sarah R. Sphar. World thermoset resins. Cleveland: Freedonia Group, 2000.
Den vollen Inhalt der Quelle findenG, Lance D., Hodge Abraham 1755-1805 und George C. Marshall Space Flight Center., Hrsg. Damage tolerance of candidate thermoset composites for use on single stage to orbit vehicles. MSFS, Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1994.
Den vollen Inhalt der Quelle findenSaif, Muhammad Jawwad. Acrylate - Based Epoxy Thermosets. Marcon Press, 2021.
Den vollen Inhalt der Quelle findenKarak, Niranjan. Sustainable Epoxy Thermosets and Nanocomposites. American Chemical Society, 2021.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "EPOXY THERMOSETES"
Mittal, Vikas. „Epoxy-Vermiculite Nanocomposites“. In Thermoset Nanocomposites, 1–16. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527659647.ch1.
Der volle Inhalt der QuelleShibata, Mitsuhiro. „Bio-Based Epoxy Resin/Clay Nanocomposites“. In Thermoset Nanocomposites, 189–209. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527659647.ch9.
Der volle Inhalt der QuelleKannan, P., und P. Sudhakara. „Liquid Crystalline Thermoset Epoxy Resins“. In High Performance Polymers and Engineering Plastics, 387–422. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118171950.ch11.
Der volle Inhalt der QuelleFrischinger, Isabelle, und Stoil Dirlikov. „Two-Phase Interpenetrating Epoxy Thermosets That Contain Epoxidized Triglyceride Oils“. In Interpenetrating Polymer Networks, 517–38. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0239.ch025.
Der volle Inhalt der QuelleFrischinger, Isabelle, Patrick Muturi und Stoil Dirlikov. „Two-Phase Interpenetrating Epoxy Thermosets That Contain Epoxidized Triglyceride Oils“. In Interpenetrating Polymer Networks, 539–56. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0239.ch026.
Der volle Inhalt der QuelleAcebo, Cristina, Xavier Ramis und Angels Serra. „1. Improved epoxy thermosets by the use of poly(ethyleneimine) derivatives“. In Polymer Engineering, herausgegeben von Bartosz Tylkowski, Karolina Wieszczycka und Renata Jastrzab, 1–50. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110469745-001.
Der volle Inhalt der QuelleDirlikov, Stoil, Isabelle Frischinger und Zhao Chen. „Phase Separation of Two-Phase Epoxy Thermosets That Contain Epoxidized Triglyceride Oils“. In Advances in Chemistry, 95–109. Washington, DC: American Chemical Society, 1996. http://dx.doi.org/10.1021/ba-1996-0252.ch007.
Der volle Inhalt der QuelleChen, Can, Wolfgang O. Eisenhut, Kreisler Lau, Alex Ingram und John Bors. „Stiffening Thin Orthotropic Deck Structures with Thermoset Epoxy Asphalt for Improved Fatigue Resistance“. In Testing and Characterization of Asphalt Materials and Pavement Structures, 32–43. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95789-0_4.
Der volle Inhalt der QuelleByeon, Kyeong Jae, Sung Hoon Hong, Ki Yeon Yang, Deok Kee Kim und Heon Lee. „Embossing on Epoxy Thermoset Polymer Using SiO2 Coated Nickel Template“. In THERMEC 2006, 3580–85. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.3580.
Der volle Inhalt der QuelleByeon, Kyeong Jae, Sung Hoon Hong, Ki Yeon Yang, Deok Kee Kim und Heon Lee. „Embossing on Epoxy Thermoset Polymer Using SiO2 Coated Nickel Template“. In THERMEC 2006, 968–73. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.968.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "EPOXY THERMOSETES"
Alrashdan, Abdulrahman, William Jordan Wright und Emrah Celik. „Light Assisted Hybrid Direct Write Additive Manufacturing of Thermosets“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24525.
Der volle Inhalt der QuelleWANG, YEQING, und SPENCER LAMPKIN. „RAPID CURING OF EPOXY RESIN USING SELF- SUSTAINED FRONTAL POLYMERIZATION TOWARDS THE ADDITIVE MANUFACTURING OF THERMOSET FIBER COMPOSITES“. In Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36414.
Der volle Inhalt der QuelleSue, Hung-Jue, P. Mac Puckett und Yee Y. Wang. „Toughening of High Performance Epoxy Adhesives Using Core-Shell Particles“. In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0512.
Der volle Inhalt der QuelleNawafleh, Nashat, Jordan Chabot, Mutabe Aljaghtham, Cagri Oztan, Edward Dauer, Recep M. Gorguluarslan, Teyfik Demir und Emrah Celik. „Additive Manufacturing of Kevlar Reinforced Epoxy Composites“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-12215.
Der volle Inhalt der QuellePrashanth, B., und Q. Huifeng. „High Tg Thermosets Based on Ultra -High Functionality Epoxy Novolacs (EPNs)“. In SAMPE neXus 2021. NA SAMPE, 2021. http://dx.doi.org/10.33599/nasampe/s.21.0413.
Der volle Inhalt der QuelleBelmonte, Alberto, Xavier Fernández-Francos und Silvia De la Flor. „Thermomechanical characterization of thiol-epoxy shape memory thermosets for mechanical actuators design“. In INTERNATIONAL CONFERENCE ON STRUCTURAL ANALYSIS OF ADVANCED MATERIALS: ICSAAM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5024162.
Der volle Inhalt der QuellePALMIERI, B. „Viscoelastic characterization of reformable epoxy vitrimers composites“. In Material Forming. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902479-202.
Der volle Inhalt der QuelleHong, Yan, D. Papathanassiou und P. Gromala. „Implementation of non-linear viscoelasticity for epoxy based thermoset polymers“. In 2015 16th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2015. http://dx.doi.org/10.1109/icept.2015.7236648.
Der volle Inhalt der QuelleGromala, P., B. Muthuraman, B. Ozturk, K. M. B. Jansen und Leo Ernst. „Material characterization and nonlinear viscoelastic modelling of epoxy based thermosets for automotive application“. In 2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2015. http://dx.doi.org/10.1109/eurosime.2015.7103082.
Der volle Inhalt der QuelleUnwin, M. E. „Epoxy Thermosets: The Detection of Adverse Stoichiometry Using Ultrasonic, Dielectric and NMR Techniques“. In QUANTITATIVE NONDESTRUCTIVE EVALUATION. AIP, 2004. http://dx.doi.org/10.1063/1.1711744.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "EPOXY THERMOSETES"
Story, Natasha. Investigating the Curing Process of Epoxy Thermosets by Near-Infrared (nIR) Spectroscopy. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1660573.
Der volle Inhalt der Quelle