Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Equation laplace“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Equation laplace" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Equation laplace"
Zaki, Ahmad, Syafruddin Side und N. Nurhaeda. „Solusi Persamaan Laplace pada Koordinat Bola“. Journal of Mathematics, Computations, and Statistics 2, Nr. 1 (12.05.2020): 82. http://dx.doi.org/10.35580/jmathcos.v2i1.12462.
Der volle Inhalt der QuelleSanusi, Wahidah, Syafruddin Side und Beby Fitriani. „Solusi Persamaan Transport dengan Menggunakan Metode Dekomposisi Adomian Laplace“. Journal of Mathematics, Computations, and Statistics 2, Nr. 2 (12.05.2020): 173. http://dx.doi.org/10.35580/jmathcos.v2i2.12580.
Der volle Inhalt der QuelleShabestari, R. Mastani, und R. Ezzati. „The Fuzzy Double Laplace Transforms and their Properties with Applications to Fuzzy Wave Equation“. New Mathematics and Natural Computation 17, Nr. 02 (23.04.2021): 319–38. http://dx.doi.org/10.1142/s1793005721500174.
Der volle Inhalt der QuelleAbdy, Muhammad, Syafruddin Side und Reza Arisandi. „Penerapan Metode Dekomposisi Adomian Laplace Dalam Menentukan Solusi Persamaan Panas“. Journal of Mathematics, Computations, and Statistics 1, Nr. 2 (19.05.2019): 206. http://dx.doi.org/10.35580/jmathcos.v1i2.9243.
Der volle Inhalt der QuelleNathiya, N., und C. Amulya Smyrna. „Infinite Schrödinger networks“. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki 31, Nr. 4 (Dezember 2021): 640–50. http://dx.doi.org/10.35634/vm210408.
Der volle Inhalt der QuelleRozumniuk, V. I. „About general solutions of Euler’s and Navier-Stokes equations“. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, Nr. 1 (2019): 190–93. http://dx.doi.org/10.17721/1812-5409.2019/1.44.
Der volle Inhalt der QuelleKamran, Sharif Ullah Khan, Salma Haque und Nabil Mlaiki. „On the Approximation of Fractional-Order Differential Equations Using Laplace Transform and Weeks Method“. Symmetry 15, Nr. 6 (07.06.2023): 1214. http://dx.doi.org/10.3390/sym15061214.
Der volle Inhalt der QuelleKogoj, Alessia E., und Ermanno Lanconelli. „On semilinear -Laplace equation“. Nonlinear Analysis: Theory, Methods & Applications 75, Nr. 12 (August 2012): 4637–49. http://dx.doi.org/10.1016/j.na.2011.10.007.
Der volle Inhalt der QuelleLu, Guozhen, und Peiyong Wang. „Inhomogeneous infinity Laplace equation“. Advances in Mathematics 217, Nr. 4 (März 2008): 1838–68. http://dx.doi.org/10.1016/j.aim.2007.11.020.
Der volle Inhalt der QuelleShokhanda, Rachana, Pranay Goswami, Ji-Huan He und Ali Althobaiti. „An Approximate Solution of the Time-Fractional Two-Mode Coupled Burgers Equation“. Fractal and Fractional 5, Nr. 4 (04.11.2021): 196. http://dx.doi.org/10.3390/fractalfract5040196.
Der volle Inhalt der QuelleDissertationen zum Thema "Equation laplace"
Ubostad, Nikolai Høiland. „The Infinity Laplace Equation“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-20686.
Der volle Inhalt der QuelleFejne, Frida. „The p-Laplace equation – general properties and boundary behaviour“. Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-359721.
Der volle Inhalt der QuelleMansour, Gihane. „Méthode de décomposition de Domaine pour les équations de Laplace et de Helmholtz : Equation de Laplace non linéaire“. Paris 13, 2009. http://www.theses.fr/2009PA132013.
Der volle Inhalt der QuelleThis work is divided into two parts : First, a domain decomposition method for the resolution of the Poisson equation and the Helmholtz equation in a bounded domain,with Dirich let boundary condition. Second, The study of the Laplace equation, with non linear boundary condition g. Using the Min-Max method. First, we elaborate some essential tools to introduce our equations, then we present two indirect methods for solving the Poisson equation : there laxed barycentric Dirichlet-Neumann algorithm and the symmetric Dirichlet-Neumann algorithm. The first algorithm was introduced and studied by A. Quarteroni, A. Valli. We present in this work a new proof of its convergence. The second scheme presented is new : we give asymmetric version of the Dirichlet-Neumann condition. We prove that this algorithm is convergent. The theoretical results show that both of the discretization methods are convergent and estimation son the error of convergence are given. We test the two methods numerically, using Comsol with Matlab solver. We notice that the symmetric method converges faster than the barycentric one
Rockstroh, Parousia. „Boundary value problems for the Laplace equation on convex domains with analytic boundary“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273939.
Der volle Inhalt der QuelleMasur, Gökce Tuba. „An Adaptive Surface Finite Element Method for the Laplace-Beltrami Equation“. Thesis, KTH, Numerisk analys, NA, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202764.
Der volle Inhalt der QuelleI den här rapporten presenterar vi en adaptiv finite elementmetod för Laplace-Beltrami ekvationen. Ekvationen är känd som Laplace ekvation på ytor. En finita elementmetod för ytor formuleras för denna partiella differentialekvation vilken implementeras i FEniCS, en open source mjukvara för automatiserad lösning av differentialekvationer. Vi formulerar en mål-orienterad adaptiv nätförfinings-metod baserad på a posteriori feluppskattningar etablerade med hjälp av metoden för dual-viktad residual. Beräkningsexempel presenteras och implementeringen diskuteras
Ricciotti, Diego. „Regularity of solutions of the p-Laplace equation in the Heisenberg group“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5708/.
Der volle Inhalt der QuelleCorreia, Joaquim, Costa Fernando da, Sackmone Sirisack und Khankham Vongsavang. „Burgers' Equation and Some Applications“. Master's thesis, Edited by Thepsavanh Kitignavong, Faculty of Natural Sciences, National University of Laos, 2017. http://hdl.handle.net/10174/26615.
Der volle Inhalt der QuelleConsiglio, Armando. „Time-fractional diffusion equation and its applications in physics“. Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13704/.
Der volle Inhalt der QuelleChin, P. W. M. (Pius Wiysanyuy Molo). „Contribution to qualitative and constructive treatment of the heat equation with domain singularities“. Thesis, University of Pretoria, 2011. http://hdl.handle.net/2263/28554.
Der volle Inhalt der QuellePichon, Eric. „Novel Methods for Multidimensional Image Segmentation“. Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7504.
Der volle Inhalt der QuelleBücher zum Thema "Equation laplace"
Medková, Dagmar. The Laplace Equation. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74307-3.
Der volle Inhalt der QuelleHomer, Matthew Stuart. The Laplace tidal wave equation. Birmingham: University of Birmingham, 1989.
Den vollen Inhalt der Quelle findenLindqvist, Peter. Notes on the Infinity Laplace Equation. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31532-4.
Der volle Inhalt der QuelleRicciotti, Diego. p-Laplace Equation in the Heisenberg Group. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23790-9.
Der volle Inhalt der QuelleLindqvist, Peter. Notes on the Stationary p-Laplace Equation. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14501-9.
Der volle Inhalt der QuelleL, Miller Gary, und Langley Research Center, Hrsg. Graph embeddings and Laplacian eigenvalues. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Den vollen Inhalt der Quelle findenL, Miller Gary, und Langley Research Center, Hrsg. Graph embeddings and Laplacian eigenvalues. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Den vollen Inhalt der Quelle findenInstitute for Computer Applications in Science and Engineering., Hrsg. Graph embeddings, symmetric real matrices, and generalized inverses. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.
Den vollen Inhalt der Quelle findenInstitute for Computer Applications in Science and Engineering., Hrsg. Graph embeddings, symmetric real matrices, and generalized inverses. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.
Den vollen Inhalt der Quelle findenT, Leighton, Miller Gary L und Institute for Computer Applications in Science and Engineering., Hrsg. The path resistance method for bounding the smallest nontrivial eigenvalue of a Laplacian. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Equation laplace"
Bassanini, Piero, und Alan R. Elcrat. „Laplace Equation“. In Theory and Applications of Partial Differential Equations, 103–211. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1875-8_4.
Der volle Inhalt der QuelleKeaton, Jeffrey R. „Laplace Equation“. In Selective Neck Dissection for Oral Cancer, 1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-12127-7_184-1.
Der volle Inhalt der QuelleKeaton, Jeffrey R. „Laplace Equation“. In Encyclopedia of Earth Sciences Series, 580–81. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73568-9_184.
Der volle Inhalt der QuelleSalsa, Sandro. „The Laplace Equation“. In UNITEXT, 115–78. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15093-2_3.
Der volle Inhalt der QuelleDiBenedetto, Emmanuele. „The Laplace Equation“. In Partial Differential Equations, 51–115. Boston, MA: Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4899-2840-5_3.
Der volle Inhalt der QuelleDiBenedetto, Emmanuele. „The Laplace Equation“. In Partial Differential Equations, 37–86. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4552-6_3.
Der volle Inhalt der QuelleSalsa, Sandro, und Gianmaria Verzini. „The Laplace Equation“. In UNITEXT, 81–147. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15416-9_2.
Der volle Inhalt der QuelleEpstein, Marcelo. „The Laplace Equation“. In Partial Differential Equations, 239–52. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55212-5_11.
Der volle Inhalt der QuelleSalsa, Sandro. „The Laplace Equation“. In UNITEXT, 115–78. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31238-5_3.
Der volle Inhalt der QuelleSalsa, Sandro, Federico M. G. Vegni, Anna Zaretti und Paolo Zunino. „The Laplace Equation“. In UNITEXT, 109–38. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-2862-3_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Equation laplace"
Valenta, Václav, Václav Šátek, Jiří Kunovský und Patricia Humenná. „Adaptive solution of Laplace equation“. In 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825996.
Der volle Inhalt der QuelleBaoquan Geng. „Flow field's Laplace equation and analysis“. In 2011 International Conference on Electronics and Optoelectronics (ICEOE). IEEE, 2011. http://dx.doi.org/10.1109/iceoe.2011.6013277.
Der volle Inhalt der QuellePichon, Eric, Delphine Nain und Marc Niethammer. „A Laplace equation approach for shape comparison“. In Medical Imaging, herausgegeben von Kevin R. Cleary und Robert L. Galloway, Jr. SPIE, 2006. http://dx.doi.org/10.1117/12.651135.
Der volle Inhalt der QuelleMATSUURA, T., S. SAITOH und M. YAMAMOTO. „NUMERICAL CAUCHY PROBLEMS FOR THE LAPLACE EQUATION“. In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0131.
Der volle Inhalt der QuelleZhou, Bin, Chun-Lai Mu und Xiao-Lin Yang. „Image Segmentation with a p-Laplace Equation Model“. In 2009 2nd International Congress on Image and Signal Processing (CISP). IEEE, 2009. http://dx.doi.org/10.1109/cisp.2009.5303947.
Der volle Inhalt der QuelleMEDKOVÁ, D. „THE OBLIQUE DERIVATIVE PROBLEM FOR THE LAPLACE EQUATION“. In Proceedings of the 3rd ISAAC Congress. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812794253_0132.
Der volle Inhalt der QuelleMajeed, Muhammad Usman, Chadia Zayane-Aissa und Taous Meriem Laleg-Kirati. „Cauchy problem for Laplace equation: An observer based approach“. In 2013 3rd International Conference on Systems and Control (ICSC). IEEE, 2013. http://dx.doi.org/10.1109/icosc.2013.6750929.
Der volle Inhalt der QuelleBui, K., I. Akkutlu und B. Li. „Capillary Pressure in Nanopores: Deviation from Young- Laplace Equation“. In 79th EAGE Conference and Exhibition 2017 - SPE EUROPEC. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201701569.
Der volle Inhalt der QuelleLi, Bo, Khoa Bui und I. Yucel Akkutlu. „Capillary Pressure in Nanopores: Deviation from Young-Laplace Equation“. In SPE Europec featured at 79th EAGE Conference and Exhibition. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/185801-ms.
Der volle Inhalt der QuelleCristofaro, Andrea, Roberto Giambo und Fabio Giannoni. „Lyapunov Stability Results for the Parabolic p-Laplace Equation“. In 2018 17th European Control Conference (ECC). IEEE, 2018. http://dx.doi.org/10.23919/ecc.2018.8550122.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Equation laplace"
Çitil, Hülya. Solutions of Fuzzy Differential Equation with Fuzzy Number Coefficient by Fuzzy Laplace Transform. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, September 2020. http://dx.doi.org/10.7546/crabs.2020.09.01.
Der volle Inhalt der QuelleGray, L. J. Program for solving the 3-dimensional LaPlace equation via the boundary element method. [D3LAPL]. Office of Scientific and Technical Information (OSTI), September 1986. http://dx.doi.org/10.2172/5065235.
Der volle Inhalt der QuelleGreengard, L., und V. Rokhlin. A New Version of the Fast Multipole Method for the Laplace Equation in Three Dimensions. Fort Belvoir, VA: Defense Technical Information Center, September 1996. http://dx.doi.org/10.21236/ada316161.
Der volle Inhalt der QuelleBlumberg, L. N. Analysis of magnetic measurement data by least squares fit to series expansion solution of 3-D Laplace equation. Office of Scientific and Technical Information (OSTI), März 1992. http://dx.doi.org/10.2172/10185838.
Der volle Inhalt der QuelleMane S. R. SOLUTIONS OF LAPLACES EQUATION AND MULTIPOLE EXPANSIONS WITH A CURVED LONGITUDINAL AXIS. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/1151263.
Der volle Inhalt der QuelleBabuska, I., T. Strouboulis, C. S. Upadhyay und S. K. Gangaraj. Study of Superconvergence by a Computer-Based Approach. Superconvergence of the Gradient in Finite Element Solutions of Laplace's and Poisson's Equations. Fort Belvoir, VA: Defense Technical Information Center, November 1993. http://dx.doi.org/10.21236/ada277537.
Der volle Inhalt der QuelleBabuska, I., T. Strouboulis, S. K. Gangaraj und C. S. Upadhyay. Eta%-Superconvergence in the Interior of Locally Refined Meshes of Quadrilaterals: Superconvergence of the Gradient in Finite Element Solutions of Laplace's and Poisson's Equations. Fort Belvoir, VA: Defense Technical Information Center, Januar 1994. http://dx.doi.org/10.21236/ada277242.
Der volle Inhalt der Quelle