Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „FAULTY NODE DETECTION“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "FAULTY NODE DETECTION" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "FAULTY NODE DETECTION"
Panda, Meenakshi, und P. M. Khilar. „Energy Efficient Distributed Fault Identification Algorithm in Wireless Sensor Networks“. Journal of Computer Networks and Communications 2014 (2014): 1–16. http://dx.doi.org/10.1155/2014/323754.
Der volle Inhalt der QuelleBae, Jangsik, Meonghun Lee und Changsun Shin. „A Data-Based Fault-Detection Model for Wireless Sensor Networks“. Sustainability 11, Nr. 21 (05.11.2019): 6171. http://dx.doi.org/10.3390/su11216171.
Der volle Inhalt der QuelleMahapatro, Arunanshu, und Pabitra Mohan Khilar. „An Adaptive Approach to Discriminate the Persistence of Faults in Wireless Sensor Networks“. ISRN Sensor Networks 2012 (14.10.2012): 1–13. http://dx.doi.org/10.5402/2012/342461.
Der volle Inhalt der QuelleXu, Xiaowei, Fangrong Zhou, Yongjie Nie, Wenhua Xu, Ke Wang, Jian OuYang, Kaihong Zhou, Shan Chen und Yiming Han. „Fault Detection and Location of 35 kV Single-Ended Radial Distribution Network Based on Traveling Wave Detection Method“. Processes 11, Nr. 8 (19.08.2023): 2494. http://dx.doi.org/10.3390/pr11082494.
Der volle Inhalt der QuelleIslampurkar, Mangesh, Kishanprasad Gunale, Sunil Somani und Nikhil Bagade. „Multiple Stuck At Fault Diagnosis System For Digital Circuit On FPGA Using Vedic Multiplier and ANN“. International Journal of Circuits, Systems and Signal Processing 16 (30.05.2022): 985–92. http://dx.doi.org/10.46300/9106.2022.16.120.
Der volle Inhalt der QuelleSun, Yin Qiu, und Hai Lin Feng. „Intermittent Faults Diagnosis in Wireless Sensor Networks“. Applied Mechanics and Materials 160 (März 2012): 318–22. http://dx.doi.org/10.4028/www.scientific.net/amm.160.318.
Der volle Inhalt der QuelleLiu, Kezhong, Yang Zhuang, Zhibo Wang und Jie Ma. „Spatiotemporal Correlation Based Fault-Tolerant Event Detection in Wireless Sensor Networks“. International Journal of Distributed Sensor Networks 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/643570.
Der volle Inhalt der QuelleSaihi, Marwa, Ahmed Zouinkhi, Boumedyen Boussaid, Mohamed Naceur Abdelkarim und Guillaume Andrieux. „Hidden Gaussian Markov model for distributed fault detection in wireless sensor networks“. Transactions of the Institute of Measurement and Control 40, Nr. 6 (15.03.2017): 1788–98. http://dx.doi.org/10.1177/0142331217691334.
Der volle Inhalt der QuelleDuche, R. N., und N. P. Sarwade. „Faulty Sensor Node Detection Using Round Trip Time and Discrete Paths in WSNs“. ISRN Sensor Networks 2013 (23.09.2013): 1–12. http://dx.doi.org/10.1155/2013/941489.
Der volle Inhalt der QuelleV, Bindhu, und Ranganathan G. „Effective Automatic Fault Detection in Transmission Lines by Hybrid Model of Authorization and Distance Calculation through Impedance Variation“. March 2021 3, Nr. 1 (27.03.2021): 36–48. http://dx.doi.org/10.36548/jei.2021.1.004.
Der volle Inhalt der QuelleDissertationen zum Thema "FAULTY NODE DETECTION"
Pettersson, Christopher. „Automatic fault detection and localization in IPnetworks : Active probing from a single node perspective“. Thesis, Linköpings universitet, Programvara och system, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-120414.
Der volle Inhalt der QuelleRu, Jifeng. „Adaptive estimation and detection techniques with applications“. ScholarWorks@UNO, 2005. http://louisdl.louislibraries.org/u?/NOD,285.
Der volle Inhalt der QuelleTitle from electronic submission form. "A dissertation ... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering and Applied Science"--Dissertation t.p. Vita. Includes bibliographical references.
Lalem, Farid. „Cadre méthodologique et applicatif pour le développement de réseaux de capteurs fiables“. Thesis, Brest, 2017. http://www.theses.fr/2017BRES0063/document.
Der volle Inhalt der QuelleWireless sensor networks emerge as an innovative technology that can revolutionize and improve our way to live, work and interact with the physical environment around us. Nevertheless, the use of such technology raises new challenges in the development of reliable and secure systems. These wireless sensor networks are often characterized by dense deployment on a large scale in resource-onstrained environments. The constraints imposed are the limitation of the processing, storage and especially energy capacities since they are generally powered by batteries.Our main objective is to propose solutions that guarantee a certain level of reliability in a WSN dedicated to sensitive applications. We have thus proposed three axes, which are:- The development of methods for detecting failed sensor nodes in a WSN.- The development of methods for detecting anomalies in measurements collected by sensor nodes, and subsequently fault sensors (providing false measurements).- The development of methods ensuring the integrity and authenticity of transmitted data over a WSN
Frini, Marouane. „Diagnostic des engrenages à base des indicateurs géométriques des signaux électriques triphasés“. Thesis, Lyon, 2018. http://www.theses.fr/2018LYSES052.
Der volle Inhalt der QuelleAlthough they are widely used, classical vibration measurements have several limitations. Vibration analysis can only identify about 60% of the defects that may occur in mechanical systems. However, the main drawbacks of vibration measurements are the difficult access to the transmission system in order to place the sensor as well as the consequent cost of implementation. This results in sensitivity problems relative to the position of the installation and the difficulty to distinguish the source of vibration because of the diversity of mechanical excitations that exist in the industrial environment.Hence, the Motor Current Signatures Analysis (M.C.S.A.) represents a promising alternative to the vibration analysis and has therefore been the subject of increasing attention in recent years. Indeed, the analysis of electrical signatures has the advantage of being a technically accessible method as well as inexpensive and non-intrusive to the system. Techniques based on currents and voltages only require the motor’s electrical measurements which are often already supervised for the purposes of the control and the protection of the electrical machines. This process was mainly used for the detection of motors faults such as rotor bars breakage and eccentricity faults as well as bearings defects. On the other hand, very little research has been focused on gear faults detection using the current analysis. In addition, three-phase electrical signals are characterized by specific geometric representations related to their waveforms and they can serve as different indicators providing additional information. Among these geometric indicators, the Park and Concordia transforms model the electrical components in a two-dimensional coordinate system and any deviation from the original representation indicates the apparition of a malfunction. Moreover, the differential equations of Frenet-Serret represent the trajectory of the signal in a three-dimensional euclidean space and thus indicate any changes in the state of the system. Although they have been previously used for bearing defects, these indicators have not been applied in the detection of gear defects using the analysis of electrical current signatures. Hence, the innovative idea of combining these indicators with signal processing techniques, as well as classification techniques for gears diagnosis using the three-phase motor’s electrical current signatures analysis is established.Hence, in this work, a new approach is proposed for gear faults diagnosis using the motor currents analysis, based on a set of geometric indicators (Park and Concordia transforms as well as the properties of the Frenet-Serret frame). These indicators are part of a specifically built fault signatures library and which also includes the classical indicators used for a wide range of faults. Thus, a proposed estimation algorithm combines experimental measurements of electrical signals with advanced signal processing methods (Empirical Mode Decomposition, ...). Next, it selects the most relevant indicators within the library based on feature selection algorithms (Sequential Backward Selection and Principal Component Analysis). Finally, this selection is combined with non-supervised classification (K-means) for the distinction between the healthy state and faulty states. It was finally validated with a an additional experimental configuration in different cases with gear faults, bearing faults and combined faults with various load levels
SHARMA, AKSHAY. „ANFIS AND FUZZY BASED FAULTY NODE DETECTION FOR WIRELESS SENSOR NETWORK“. Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/20398.
Der volle Inhalt der QuelleYang, Shih-An, und 楊世安. „A Log-Only Node Fault Detection Method in Wireless Sensor Network“. Thesis, 2011. http://ndltd.ncl.edu.tw/handle/40470148701113594855.
Der volle Inhalt der QuelleChen, Hsin-Hsiu, und 陳新秀. „An improved SPRT detection method for replication node in fault tolerant wireless sensor networks“. Thesis, 2017. http://ndltd.ncl.edu.tw/handle/3wq42g.
Der volle Inhalt der Quelle國立交通大學
資訊管理研究所
105
As the Internet of Things came, the application of the wireless sensor networks has increased. Meanwhile, there are also many threats of networks security need to be dealt with. One of the network attacks is the replication attack. The attackers may replicate few of the nodes to be considered as the legitimate nodes. The cloned nodes would integrate into the original network and launch a variety of internal attacks. There are several replica detections in the literature for the mobile environment. Most of the detections are limited by high computation and communication cost. Some of detections based on the Sequential Probability Ratio Test have much lower system overhead. However, these prior works decrease the accuracy when sensors lie in a server environment so that sensors are prone to retransmit the message. This paper proposes a replica detection based on the SPRT in fault tolerant wireless sensor network. In order to improve the accuracy of the judgment, we use the power of nodes and the slope of energy as the appendix and apply the SPRT to adjust the replica detection dynamically in the fault tolerant environment. The experiments show that our proposed scheme achieves better performance on both efficiency of detecting and reduction of error rate than the prior work.
(9780674), Esteban Bernal Arango. „Smart sensor node for freight wagon condition monitoring systems“. Thesis, 2021. https://figshare.com/articles/thesis/Smart_sensor_node_for_freight_wagon_condition_monitoring_systems/19184819.
Der volle Inhalt der QuelleAli, Md Mohsin. „High Performance Fault-Tolerant Solution of PDEs using the Sparse Grid Combination Technique“. Phd thesis, 2016. http://hdl.handle.net/1885/109292.
Der volle Inhalt der QuelleBuchteile zum Thema "FAULTY NODE DETECTION"
Puthussery, Antony, und G. Muneeswari. „Faulty Node Detection Using Vertex Magic Total Labelling in Distributed System“. In Sustainable Communication Networks and Application, 619–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8677-4_50.
Der volle Inhalt der QuelleAnand, Santosh, und B. P. Adithi. „Detection and Prevention of Faulty Node in Heterogeneous Wireless Sensor Network“. In Advances in Intelligent Systems and Computing, 383–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5301-8_29.
Der volle Inhalt der QuelleSatish, E. G., und A. C. Ramachandra. „Faulty Node Detection and Correction of Route in Network-On-Chip (NoC)“. In Innovative Data Communication Technologies and Application, 783–89. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7167-8_57.
Der volle Inhalt der QuelleDeshmukh, Ketki, und Avinash More. „Modified Long Short-Term Memory Algorithm for Faulty Node Detection Using node’s Raw Data Pattern“. In Data Management, Analytics and Innovation, 345–55. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1414-2_26.
Der volle Inhalt der QuelleMohapatra, Nibedita Priyadarsini, und Manjushree Nayak. „An Energy-Saving Approach for Routing in Wireless Sensor Networks with ML-Based Faulty Node Detection“. In Advances in IoT and Security with Computational Intelligence, 309–22. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5085-0_30.
Der volle Inhalt der QuelleNath, Nithish N., V. Radhamani Pillay und G. Saisuriyaa. „Distributed Node Fault Detection and Tolerance Algorithm for Controller Area Networks“. In Advances in Intelligent Systems and Computing, 247–57. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23258-4_22.
Der volle Inhalt der QuelleMondal, Bappaditya, Anirban Bhattacharjee, Subham Saha, Shalini Parekh, Chandan Bandyopadhyay und Hafizur Rahaman. „An Approach for Detection of Node Displacement Fault (NDF) in Reversible Circuit“. In Communications in Computer and Information Science, 605–16. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9767-8_50.
Der volle Inhalt der QuelleYang, Ming, Jun Huang und Fei Sun. „A Note on Actuator Fault Detection for One-Sided Lipschitz Systems“. In Lecture Notes in Electrical Engineering, 574–81. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9682-4_60.
Der volle Inhalt der QuelleBanerjee, Indrajit, Prasenjit Chanak, Biplab Kumar Sikdar und Hafizur Rahaman. „DFDNM: A Distributed Fault Detection and Node Management Scheme for Wireless Sensor Network“. In Advances in Computing and Communications, 68–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22720-2_7.
Der volle Inhalt der QuelleDas, Sukanta, Nazma N. Naskar, Sukanya Mukherjee, Mamata Dalui und Biplab K. Sikdar. „Characterization of CA Rules for SACA Targeting Detection of Faulty Nodes in WSN“. In Lecture Notes in Computer Science, 300–311. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15979-4_32.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "FAULTY NODE DETECTION"
Li, Wenjie, Laura Galluccio, Michel Kieffer und Francesca Bassi. „Distributed Faulty Node Detection in DTNs“. In 2016 25th International Conference on Computer Communication and Networks (ICCCN). IEEE, 2016. http://dx.doi.org/10.1109/icccn.2016.7568511.
Der volle Inhalt der QuelleRoyyan, Muhammad, Joong-Hyuk Cha, Jae-Min Lee und Dong-Seong Kim. „Data-driven faulty node detection scheme for Wireless Sensor Networks“. In 2017 Wireless Days (WD). IEEE, 2017. http://dx.doi.org/10.1109/wd.2017.7918145.
Der volle Inhalt der QuelleJadav, Pooja, und Vinoth K. Babu. „Fuzzy logic based faulty node detection in Wireless Sensor Network“. In 2017 International Conference on Communication and Signal Processing (ICCSP). IEEE, 2017. http://dx.doi.org/10.1109/iccsp.2017.8286384.
Der volle Inhalt der QuelleLi, Wenjie, Francesca Bassi, Michel Kieffer, Alex Calisti, Gianni Pasolini und Davide Dardari. „Distributed faulty node detection in DTNs in presence of Byzantine attack“. In ICC 2017 - 2017 IEEE International Conference on Communications. IEEE, 2017. http://dx.doi.org/10.1109/icc.2017.7996846.
Der volle Inhalt der QuelleDusane, Atul V., und Krishnakant P. Adhiya. „Detection of Faulty node with Hybrid Machine Learning using SVM model“. In 2023 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES). IEEE, 2023. http://dx.doi.org/10.1109/cises58720.2023.10183576.
Der volle Inhalt der QuelleShial, Rabindra Kumar, Bhabani Sankar Gouda, Sudhir Ranjan Pattanaik und Nilambar Sethi. „A Centralized Faulty Node Detection Algorithm Based on Statistical Analysis in WSN“. In 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA). IEEE, 2020. http://dx.doi.org/10.1109/iccsea49143.2020.9132847.
Der volle Inhalt der QuelleEjbali, Ridha, Mourad Zaied, Jamila Atiga und Nour Elhouda Mbarki. „Faulty node detection in wireless sensor networks using a recurrent neural network“. In Tenth International Conference on Machine Vision (ICMV 2017), herausgegeben von Jianhong Zhou, Petia Radeva, Dmitry Nikolaev und Antanas Verikas. SPIE, 2018. http://dx.doi.org/10.1117/12.2314837.
Der volle Inhalt der QuelleZhu, Bing, Wenzhu Zhang, Wei Feng und Lin Zhang. „Distributed faulty node detection and isolation in delay-tolerant vehicular sensor networks“. In 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC 2012). IEEE, 2012. http://dx.doi.org/10.1109/pimrc.2012.6362584.
Der volle Inhalt der QuellePhatak, Tejashree, und S. D. Sawarkar. „Enhancing QoS of Wireless Sensor Network by detection of faulty sensor node“. In 2016 International Conference on Computing, Analytics and Security Trends (CAST). IEEE, 2016. http://dx.doi.org/10.1109/cast.2016.7914948.
Der volle Inhalt der QuelleLalem, Farid, Ahcène Bounceur, Reinhardt Euler, Mohammad Hammoudeh, Rahim Kacimi und Sanaa Kawther Ghalem. „Distributed faulty sensor node detection in wireless sensor networks based on copula theory“. In ICC '17: Second International Conference on Internet of Things, Data and Cloud Computing. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3018896.3065837.
Der volle Inhalt der Quelle