Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Field emission gun (FEG)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Field emission gun (FEG)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Field emission gun (FEG)"
Joy, David C. „Microanalysis with a 200keV FEG TEM“. Proceedings, annual meeting, Electron Microscopy Society of America 49 (August 1991): 700–701. http://dx.doi.org/10.1017/s0424820100087811.
Der volle Inhalt der QuelleBrock, Judith M., Max T. Otten und Marc J. C. de Jong. „Performance and applications of a field-emission gun TEM/STEM“. Proceedings, annual meeting, Electron Microscopy Society of America 50, Nr. 2 (August 1992): 942–43. http://dx.doi.org/10.1017/s0424820100129346.
Der volle Inhalt der QuelleTomita, T., S. Katoh, H. Kitajima, Y. Kokubo und Y. Ishida. „Development of Field-Emission Gun for High-Voltage Electron Microscope“. Proceedings, annual meeting, Electron Microscopy Society of America 48, Nr. 2 (12.08.1990): 94–95. http://dx.doi.org/10.1017/s0424820100134065.
Der volle Inhalt der QuelleMul, P. M., B. J. M. Bormans und L. Schaap. „Design of a Field-Emission Gun for the Phillips CM20/STEM microscope“. Proceedings, annual meeting, Electron Microscopy Society of America 48, Nr. 2 (12.08.1990): 100–101. http://dx.doi.org/10.1017/s0424820100134090.
Der volle Inhalt der QuelleMurakoshi, H., M. Ichihashi, T. Komoda, S. Isakozawa und T. Kubo. „Field-emission gun and illuminating lens system for 200kV FE-TEM“. Proceedings, annual meeting, Electron Microscopy Society of America 47 (06.08.1989): 110–11. http://dx.doi.org/10.1017/s0424820100152525.
Der volle Inhalt der QuelleOlson, N. H., U. Lücken, S. B. Walker, M. T. Otten und T. S. Baker. „Cryoelectron microscopy and image reconstruction of spherical viruses with spot scan and FEG technologies“. Proceedings, annual meeting, Electron Microscopy Society of America 53 (13.08.1995): 1086–87. http://dx.doi.org/10.1017/s0424820100141809.
Der volle Inhalt der QuelleOhi, M., K. Harasawa, T. Niikura, H. Okazaki, Y. Ishimori, T. Miyokawa und S. Nakagawa. „Development of a New Digital Fe SEM“. Proceedings, annual meeting, Electron Microscopy Society of America 48, Nr. 1 (12.08.1990): 432–33. http://dx.doi.org/10.1017/s0424820100180914.
Der volle Inhalt der QuelleTroyon, Michel, und He Ning Lei. „Electron Trajectories Calculations of an Energy - Filtering Field-Emission Gun“. Proceedings, annual meeting, Electron Microscopy Society of America 48, Nr. 1 (12.08.1990): 192–93. http://dx.doi.org/10.1017/s0424820100179713.
Der volle Inhalt der QuelleKaneyama, T., M. Kawasaki, T. Tomita, T. Honda und M. Kersker. „The information limit of a 200kv field emission TEM“. Proceedings, annual meeting, Electron Microscopy Society of America 53 (13.08.1995): 586–87. http://dx.doi.org/10.1017/s0424820100139305.
Der volle Inhalt der QuelleCoened, W. M. J., A. J. E. M. Janssend, M. Op de Beeck, D. Van Dyck, E. J. Van Zwet und H. W. Zandbergen. „Focus-variation image reconstruction in field-emission TEM“. Proceedings, annual meeting, Electron Microscopy Society of America 51 (01.08.1993): 1070–71. http://dx.doi.org/10.1017/s0424820100151180.
Der volle Inhalt der QuelleDissertationen zum Thema "Field emission gun (FEG)"
Dylewski, Benoît. „Caractérisation expérimentale multi-échelles et multi-techniques du rail prélevé en service : de la déformation plastique sévère et des évolutions de microstructure à l'amorçage de fissures par Fatigue de Contact de Roulement“. Electronic Thesis or Diss., Compiègne, 2016. http://www.theses.fr/2016COMP2324.
Der volle Inhalt der QuelleThis work is dedicated to the characterization of severe plastic deformation and microstructure evolution induced in rails in service, leading to cracks initiation by Rolling Contact Fatigue. Initiation of these surface cracks and in-depth propagation involve several phenomena at the microstructure scale which can lead to surface spalling at the macroscopic scale or even to brutal failure of the rail during its service. To improve understanding of these various phenomena beneath the rail surface, an experimental, multi-scales and multi-techniques methodology has been followed on rails removed from service. In the first part of results, the presence of a three-dimensional gradient of microstructure, of crystallography and of mechanical properties induced by the repeated contacts with wheels has been highlighted in a rail head during its service. Then, by means of a field analysis campaign of rails removed from service at several accumulated loads, the different stages of in-depth gradients development and plastic deformation accumulated in the rail head have been estimated in relation with total accumulated tonnage and cracks initiation. This study contributes to improve the understanding of the damage mechanisms in rolling contact fatigue of rails in service and the modeling of rail plasticity and crack propagation by including anisotropy of the running band and effect of in-depth microstructure evolution
Liška, Ivo. „Coulomb Interactions in Electron Beams in the Vicinity of a Schottky and Cold Field Emission Sources“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-233896.
Der volle Inhalt der QuelleBrenac, Ariel. „Développements instrumentaux pour la photoémission inverse“. Grenoble 1, 1987. http://www.theses.fr/1987GRE10010.
Der volle Inhalt der QuelleLiao, Po-Hsinag, und 廖柏翔. „Development of Field Emission Electron Gun for Desktop Electron Microscope“. Thesis, 2018. http://ndltd.ncl.edu.tw/handle/3d5ybg.
Der volle Inhalt der Quelle國立清華大學
工程與系統科學系
106
With the development of technology, electron microscope has become an important observational tool in different major such as physics, chemistry, biology, and materials engineering. The source of electron microscope, it usually divide into two types, thermionic type and field emission type. Field emission type electron source usually have smaller tip radius than thermal type, so it can produce smaller electron source. Then, electron beam pass by condenser lens, a small spot size source is formed. Therefore, the brightness of the electron gun is much brighter than thermal type source. In addition, field emission source spectral energy distribution is close to monochromatic, and has smaller energy spread. So field emission source has better coherence that lead it obtain higher resolution. Although field-emission type electron gun have above advantages, but it need to maintain in high vacuum condition. Because the tip of the field emission electron gun can easily react with impurities in the air, and lead the needle tip blunt. When the needle tip is blunt, it will cause the field emission gun poor efficiency. So the field emission type electron gun needs lots of high vacuum equipment to maintain it stay in high vacuum condition and high efficiency. The purpose of this research is using cheaper and more convenient ways to produce a field emission electron gun tip. And then set it up on our lab’s group made Desktop Electron Microscope to improve the resolution. In this paper, we successfully fabricated a field electron gun tip using electrolytic machining. The radius of curvature of the electron gun tip is about 100 nm or less, and its reproduction rate is also high. Finally, we also tried to deposit ZrO on the tip to make thermionic (Schottky) type field electron gun. After that, we also design some components installed on our Desktop Electron Microscope to finish field emission microscope.
YIN, k. M., und 殷開明. „Field emission gun TEM research for Cu-Bi alloys in grain boundary segregation“. Thesis, 1996. http://ndltd.ncl.edu.tw/handle/21098675102269389780.
Der volle Inhalt der QuelleChang, Holin, und 張豪麟. „Failure Analysis of Diffusion Barrier Layer in VLSI Deviceby Field Emission Gun Energy Filter TEM“. Thesis, 1996. http://ndltd.ncl.edu.tw/handle/75194869367329745607.
Der volle Inhalt der QuelleBuchteile zum Thema "Field emission gun (FEG)"
Lich, Ben, Faysal Boughorbel, Pavel Potocek und Emine Korkmaz. „FEG-SEM for Large Volume 3D Structural Analysis in Life Sciences“. In Biological Field Emission Scanning Electron Microscopy, 103–15. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781118663233.ch6.
Der volle Inhalt der QuelleBrodusch, Nicolas, Hendrix Demers und Raynald Gauvin. „Developments in Field Emission Gun Technologies and Advanced Detection Systems“. In Field Emission Scanning Electron Microscopy, 5–12. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4433-5_2.
Der volle Inhalt der QuelleMook, H. W., und P. Kruit. „Electrostatic in-line monochromator for Schottky Field Emission Gun“. In Electron Microscopy and Analysis 1997, 81–84. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003063056-19.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Field emission gun (FEG)"
Chen, Tao, Chen Xue-dong, Xiao-ming Lian und Zhi-chao Fan. „Effect of Ti Additions on Microstructure and Mechanical Properties of Centrifugally Cast 25Cr-35Ni-Nb Alloy“. In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63411.
Der volle Inhalt der QuelleSpathis, V., und M. C. Price. „Experiments using a light gas gun to investigate the impact melting of gunshot residue analogues“. In 2019 15th Hypervelocity Impact Symposium. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/hvis2019-030.
Der volle Inhalt der QuelleWang, L., R. J. K. Wood, H. E. G. Powrie, E. Streit und I. Care. „Performance Evaluation of Hybrid (Ceramic on Steel) Bearings With Advanced Aircraft Engine Oils for Lubrication“. In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53418.
Der volle Inhalt der QuelleLin, Kun-Lin, Jian-Shing Luo, Hsiu-Ting Lee und Jeremy D. Russell. „Localized Epoxy Layer Formation on Surface Defect Using a Micro-Brush in a Plucking System“. In ISTFA 2009. ASM International, 2009. http://dx.doi.org/10.31399/asm.cp.istfa2009p0126.
Der volle Inhalt der QuelleHawco, Jessica, Elliott Burden, Edison Sripal und Lesley James. „Evaluating the Prospect of Oil Production in Tight Winterhouse Formation Rocks in Western Newfoundland“. In SPE Canadian Energy Technology Conference. SPE, 2022. http://dx.doi.org/10.2118/208908-ms.
Der volle Inhalt der QuelleLuan, B. F., R. S. Qiu, Z. Zhou, K. L. Murty, J. Zhou und Q. Liu. „Characterization of Hot Deformation Behavior of Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cr Using Processing Map“. In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-15186.
Der volle Inhalt der QuelleLewis, Samantha M., Julian Merrick, Mohamed A. K. Othman, Andrew Haase, Sami Tantawi und Emilio A. Nanni. „A THz-Driven Field Emission Electron Gun“. In 2020 45th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). IEEE, 2020. http://dx.doi.org/10.1109/irmmw-thz46771.2020.9370485.
Der volle Inhalt der QuelleShao, J. H., S. Antipov, S. V. Baryshev, H. B. Chen, M. E. Conde, D. S. Doran, W. Gai et al. „Field emission study using an L-band photocathode gun“. In ADVANCED ACCELERATOR CONCEPTS 2016: 16th Advanced Accelerator Concepts Workshop. Author(s), 2016. http://dx.doi.org/10.1063/1.4965637.
Der volle Inhalt der QuelleGetty, Stephanie A., Todd T. King, Rachael A. Bis, Hollis H. Jones, Federico Herrero, Bernard A. Lynch, Patrick Roman und Paul Mahaffy. „Performance of a carbon nanotube field emission electron gun“. In Defense and Security Symposium, herausgegeben von Thomas George und Zhongyang Cheng. SPIE, 2007. http://dx.doi.org/10.1117/12.720995.
Der volle Inhalt der QuelleEroshkin, Pavel A., und Evgeny P. Sheshin. „Electron gun with field emission cathode for x-ray tube“. In 2014 Tenth International Vacuum Electron Sources Conference (IVESC). IEEE, 2014. http://dx.doi.org/10.1109/ivesc.2014.6891972.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Field emission gun (FEG)"
Thangaraj, Charles. Gated Field-Emission Cathode Radio-Frequency (RF) Gun. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1433861.
Der volle Inhalt der QuelleJay L. Hirshfield. Rf Gun with High-Current Density Field Emission Cathode. Office of Scientific and Technical Information (OSTI), Dezember 2005. http://dx.doi.org/10.2172/861455.
Der volle Inhalt der QuelleMcGuire, Gary, Allen Martin und John Noonan. Final Technical Report- Back-gate Field Emission-based Cathode RF Electron Gun. Office of Scientific and Technical Information (OSTI), Oktober 2010. http://dx.doi.org/10.2172/991655.
Der volle Inhalt der QuelleZhai, Tongguang, Chi-Sing Man und James Morris. Field Emission Gun Scanning Electron Microscopy with Electron Back Scatter Diffraction for Texture, Formability and Fatigue Studies of Advanced Materials. Fort Belvoir, VA: Defense Technical Information Center, Mai 2007. http://dx.doi.org/10.21236/ada484492.
Der volle Inhalt der Quelle