Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Finite algebraic structures“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Finite algebraic structures" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Finite algebraic structures"
Aichinger, Erhard, Peter Mayr und Ralph McKenzie. „On the number of finite algebraic structures“. Journal of the European Mathematical Society 16, Nr. 8 (2014): 1673–86. http://dx.doi.org/10.4171/jems/472.
Der volle Inhalt der QuelleMilani, Vida, Seyed M. H. Mansourbeigi und Hossein Finizadeh. „Algebraic and topological structures on rational tangles“. Applied General Topology 18, Nr. 1 (03.04.2017): 1. http://dx.doi.org/10.4995/agt.2017.2250.
Der volle Inhalt der QuelleCampercholi, Miguel, Mauricio Tellechea und Pablo Ventura. „Deciding Quantifier-free Definability in Finite Algebraic Structures“. Electronic Notes in Theoretical Computer Science 348 (März 2020): 23–41. http://dx.doi.org/10.1016/j.entcs.2020.02.003.
Der volle Inhalt der QuelleLevitskaya, A. A. „Systems of Random Equations over Finite Algebraic Structures“. Cybernetics and Systems Analysis 41, Nr. 1 (Januar 2005): 67–93. http://dx.doi.org/10.1007/s10559-005-0042-7.
Der volle Inhalt der QuelleShevlyakov, Artyom N. „Direct powers of algebraic structures and equations“. Prikladnaya Diskretnaya Matematika, Nr. 58 (2023): 31–39. http://dx.doi.org/10.17223/20710410/58/4.
Der volle Inhalt der QuelleLaskowski, Michael C. „Mutually algebraic structures and expansions by predicates“. Journal of Symbolic Logic 78, Nr. 1 (März 2013): 185–94. http://dx.doi.org/10.2178/jsl.7801120.
Der volle Inhalt der QuelleLin, Zhe, Mihir Kumar Chakraborty und Minghui Ma. „Residuated Algebraic Structures in the Vicinity of Pre-rough Algebra and Decidability“. Fundamenta Informaticae 179, Nr. 3 (15.04.2021): 239–74. http://dx.doi.org/10.3233/fi-2021-2023.
Der volle Inhalt der QuelleGarcía, Darío, Dugald Macpherson und Charles Steinhorn. „Pseudofinite structures and simplicity“. Journal of Mathematical Logic 15, Nr. 01 (Juni 2015): 1550002. http://dx.doi.org/10.1142/s0219061315500026.
Der volle Inhalt der QuelleRybalov, Alexander. „On generic complexity of theories of finite algebraic structures“. Journal of Physics: Conference Series 1901, Nr. 1 (01.05.2021): 012046. http://dx.doi.org/10.1088/1742-6596/1901/1/012046.
Der volle Inhalt der QuelleHambleton, Ian, und Matthias Kreck. „Smooth structures on algebraic surfaces with finite fundamental group“. Inventiones Mathematicae 102, Nr. 1 (Dezember 1990): 109–14. http://dx.doi.org/10.1007/bf01233422.
Der volle Inhalt der QuelleDissertationen zum Thema "Finite algebraic structures"
Shminke, Boris. „Applications de l'IA à l'étude des structures algébriques finies et à la démonstration automatique de théorèmes“. Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4058.
Der volle Inhalt der QuelleThis thesis contributes to a finite model search and automated theorem proving, focusing primarily but not limited to artificial intelligence methods. In the first part, we solve an open research question from abstract algebra using an automated massively parallel finite model search, employing the Isabelle proof assistant. Namely, we establish the independence of some abstract distributivity laws in residuated binars in the general case. As a by-product of this finding, we contribute a Python client to the Isabelle server. The client has already found its application in the work of other researchers and higher education. In the second part, we propose a generative neural network architecture for producing finite models of algebraic structures belonging to a given variety in a way inspired by image generation models such as GANs (generative adversarial networks) and autoencoders. We also contribute a Python package for generating finite semigroups of small size as a reference implementation of the proposed method. In the third part, we design a general architecture of guiding saturation provers with reinforcement learning algorithms. We contribute an OpenAI Gym-compatible collection of environments for directing Vampire and iProver and demonstrate its viability on select problems from the Thousands of Problems for Theorem Provers (TPTP) library. We also contribute a containerised version of an existing ast2vec model and show its applicability to embedding logical formulae written in the clausal-normal form. We argue that the proposed modular approach can significantly speed up experimentation with different logic formulae representations and synthetic proof generation schemes in future, thus addressing the data scarcity problem, notoriously limiting the progress in applying the machine learning techniques for automated theorem proving
Bergvall, Olof. „Cohomology of arrangements and moduli spaces“. Doctoral thesis, Stockholms universitet, Matematiska institutionen, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-132822.
Der volle Inhalt der QuelleD'Andrea, Alessandro 1972. „Structure theory of finite conformal algebras“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47476.
Der volle Inhalt der QuelleKim, Sang Hyun. „On the structure of finite AW*-algebras /“. Search for this dissertation online, 2004. http://wwwlib.umi.com/cr/ksu/main.
Der volle Inhalt der QuelleNorth, Evan I. „A Study on the Algebraic Structure of SL(2,p)“. Ohio University Honors Tutorial College / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors1461266377.
Der volle Inhalt der QuelleAvery, Thomas Charles. „Structure and semantics“. Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/29517.
Der volle Inhalt der QuelleStack, Cora. „Some results on the structure of the groups of units of finite completely primary rings and on the structure of finite dimensional nilpotent algebras“. Thesis, University of Reading, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262483.
Der volle Inhalt der QuellePsioda, Matthew. „An examination of the structure of extension families of irreducible polynomials over finite fields /“. Electronic version (PDF), 2006. http://dl.uncw.edu/etd/2006/psiodam/matthewpsioda.pdf.
Der volle Inhalt der QuelleTappe, Stefan. „Finite dimensional realizations for term structure models driven by semimartingales“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2005. http://dx.doi.org/10.18452/15369.
Der volle Inhalt der QuelleLet f(t,T) be a term structure model of Heath-Jarrow-Morton type df(t,T) = alpha(t,T)dt + sigma(t,T)dX_t, driven by a multidimensional semimartingale X. Our objective is to study the existence of finite dimensional realizations for equations of this kind. Choosing the class of Grigelionis processes (including in particular Levy processes) as driving processes, we approach this problem from two different directions. Extending the ideas from differential geometry in Björk and Svensson (2001), we show that the criterion for the existence of finite dimensional realizations, proven in the aforementioned paper, still serves as a necessary condition in our setup. This result is applied to concrete volatility structures. In the context of benchmark realizations, which are a natural generalization of short rate realizations, we derive integro-differential equations, suitable for the analysis of the realization problem. Generalizing Jeffrey (1995), we also prove a result stating that forward rate models, which generically possess a benchmark realization, must have a singular Hessian matrix. Both approaches reveal that, with regard to the results known for driving Wiener processes, new phenomena emerge, as soon as the driving process X has jumps. In particular, the occurrence of jumps severely limits the range of models that admit finite dimensional realizations. For this reason we prove, for the often considered case of deterministic direction volatility structures, the existence of finite dimensional systems converging to the forward rate model.
Filho, Antonio Calixto de Souza. „Sobre uma classificação dos anéis de inteiros, dos semigrupos finitos e dos RA-loops com a propriedade hiperbólica“. Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-30012009-163028/.
Der volle Inhalt der QuelleFor a given division algebra of a quaternion algebra, we construct and define two types of units of its $\\Z$-orders: Pell units and Gauss units. Also, for the quadratic imaginary extensions over the racionals and some fixed group $G$, we classify the algebraic integral rings for which the unit group ring is a hyperbolic group. We also classify the finite semigroups $S$, for which all integral orders $\\Gamma$ of $\\Q S$ have hyperbolic unit group $\\U(\\Gamma)$. We conclude with the classification of the $RA$-loops $L$ for which the unit loop of its integral loop ring does not contain a free abelian subgroup of rank two.
Bücher zum Thema "Finite algebraic structures"
Kandasamy, W. B. Vasantha. Finite neutrosophic complex numbers. Columbus, Ohio: Zip Publishing, 2011.
Den vollen Inhalt der Quelle findenFlannery, D. L. (Dane Laurence), 1965-, Hrsg. Algebraic design theory. Providence, R.I: American Mathematical Society, 2011.
Den vollen Inhalt der Quelle findenWAIFI 2010 (2010 Istanbul, Turkey). Arithmetic of finite fields: Third international workshop, WAIFI 2010, Istanbul, Turkey, June 27-30, 2010 ; proceedings. Berlin ; New York: Springer, 2010.
Den vollen Inhalt der Quelle findenGermany) International Conference on Finite Fields and Applications (11th 2013 Magdeburg. Topics in finite fields: 11th International Conference on Finite Fields and Their Applications, July 22--26, 2013, Magdeburg, Germany. Herausgegeben von Kyureghyan Gohar 1974 editor, Mullen Gary L. editor und Pott Alexander 1961 editor. Providence, Rhode Island: American Mathematical Society, 2015.
Den vollen Inhalt der Quelle findenFrancisco, Rodríguez-Henríquez, und SpringerLink (Online service), Hrsg. Arithmetic of Finite Fields: 4th International Workshop, WAIFI 2012, Bochum, Germany, July 16-19, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenRalph, McKenzie, Hrsg. The structure of finite algebras. Providence, R.I: American Mathematical Society, 1988.
Den vollen Inhalt der Quelle findenJungnickel, D. Finite fields: Structure and arithmetics. Mannheim: B.I. Wissenschaftsverlag, 1993.
Den vollen Inhalt der Quelle findenFinite mathematics, models, and structure. Dubuque, Iowa: Kendall/Hunt Pub. Co., 1995.
Den vollen Inhalt der Quelle findenAdams, William J. Finite mathematics, models, and structure. [United States]: Xlibris Corporation, 2009.
Den vollen Inhalt der Quelle findenMatthew, Valeriote, Hrsg. The structure of decidable locally finite varieties. Boston: Birkhäuser, 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Finite algebraic structures"
Cherlin, Gregory. „Large Finite Structures with Few Types“. In Algebraic Model Theory, 53–105. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8923-9_3.
Der volle Inhalt der QuelleMiller, Matthew. „Multiplicative Structures on Finite Free Resolutions“. In Free Resolutions in Commutative Algebra and Algebraic Geometry, 35–46. Boca Raton: A K Peters/CRC Press, 2023. http://dx.doi.org/10.1201/9781003420187-4.
Der volle Inhalt der QuelleSchenberg, Mario. „Algebraic Structures of Finite Point Sets I“. In Clifford Algebras and their Applications in Mathematical Physics, 505–18. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8090-8_47.
Der volle Inhalt der QuelleBalakrishnan, R., und Sriraman Sridharan. „Algebraic Structures II (Vector Spaces and Finite Fields)“. In Discrete Mathematics, 191–224. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429486326-4.
Der volle Inhalt der QuelleKhoussainov, Bakhadyr, und Jiamou Liu. „Decision Problems for Finite Automata over Infinite Algebraic Structures“. In Implementation and Application of Automata, 3–11. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40946-7_1.
Der volle Inhalt der QuelleAvanzi, Roberto Maria, und Preda Mihăilescu. „Generic Efficient Arithmetic Algorithms for PAFFs (Processor Adequate Finite Fields) and Related Algebraic Structures“. In Selected Areas in Cryptography, 320–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24654-1_23.
Der volle Inhalt der QuelleYang, Zhixuan, Marco Paviotti, Nicolas Wu, Birthe van den Berg und Tom Schrijvers. „Structured Handling of Scoped Effects“. In Programming Languages and Systems, 462–91. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99336-8_17.
Der volle Inhalt der QuelleMyers, Robert S. R., Stefan Milius und Henning Urbat. „Nondeterministic Syntactic Complexity“. In Lecture Notes in Computer Science, 448–68. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71995-1_23.
Der volle Inhalt der QuelleMcKenzie, Ralph, und Matthew Valeriote. „Centerless algebras“. In Structure of Decidable Locally Finite Varieties, 57–64. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4612-4552-0_4.
Der volle Inhalt der QuelleAlexandru, Andrei, und Gabriel Ciobanu. „Algebraic Structures in Finitely Supported Mathematics“. In Finitely Supported Mathematics, 49–127. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42282-4_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Finite algebraic structures"
Li, Xianhua. „On Some Results of Finite Solvable Groups“. In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0029.
Der volle Inhalt der QuelleMazurov, V. D. „On Recognizability of Finite Groups by Spectrum“. In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0031.
Der volle Inhalt der QuelleDenecke, K., und Y. Susanti. „Semigroups of n-ary Operations on Finite Sets“. In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0011.
Der volle Inhalt der QuelleGuo, Xiuyun. „Power Automorphisms and Induced Automorphisms in Finite Groups“. In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0021.
Der volle Inhalt der QuelleMoghaddamfar, A. R. „Recognizability of Finite Groups by Order and Degree Pattern“. In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0032.
Der volle Inhalt der QuelleMuchtadi-Alamsyah, I., F. Yuliawan und A. Muchlis. „Finite Field Basis Conversion and Normal Basis in Characteristic Three“. In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0034.
Der volle Inhalt der QuelleBallester-Bolinches, A., R. Esteban-Romero und Yangming Li. „Cover and Avoidance Properties and the Structure of Finite Groups“. In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0003.
Der volle Inhalt der QuelleGuo, Wenbin, Vasilii G. Safonov und Alexander N. Skiba. „On Some Constructions and Results of the Theory of Partially Soluble Finite Groups“. In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0019.
Der volle Inhalt der QuelleKrot, Alexander M., Mikhail N. Dolgikh und Natalya A. Romanovskaya. „Coding of images based on finite algebraic structures and fast convolution algorithms“. In AeroSense '97, herausgegeben von Abinash C. Dubey und Robert L. Barnard. SPIE, 1997. http://dx.doi.org/10.1117/12.280907.
Der volle Inhalt der QuelleSalisbury, Chris. „Dynamic Finite Element Analysis of a Highly Parallel Robotic Surface“. In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-4974.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Finite algebraic structures"
Borgwardt, Stefan, und Rafael Peñaloza. Complementation and Inclusion of Weighted Automata on Infinite Trees: Revised Version. Technische Universität Dresden, 2011. http://dx.doi.org/10.25368/2022.180.
Der volle Inhalt der QuelleBorgwardt, Stefan, und Rafael Peñaloza. Complementation and Inclusion of Weighted Automata on Infinite Trees. Technische Universität Dresden, 2010. http://dx.doi.org/10.25368/2022.178.
Der volle Inhalt der Quelle