Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Finites elements method“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Finites elements method" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Finites elements method"
Lugo Jiménez, Abdul Abner, Guelvis Enrique Mata Díaz und Bladismir Ruiz. „A comparative analysis of methods: mimetics, finite differences and finite elements for 1-dimensional stationary problems“. Selecciones Matemáticas 8, Nr. 1 (30.06.2021): 1–11. http://dx.doi.org/10.17268/sel.mat.2021.01.01.
Der volle Inhalt der QuelleBarros, M. L. C., A. G. Batista, M. J. S. Sena, A. L. Amarante Mesquita und C. J. C. Blanco. „Application of a shallow water model to analyze environmental effects in the Amazon Estuary Region: a case study of the Guajará Bay (Pará – Brazil)“. Water Practice and Technology 10, Nr. 4 (01.12.2015): 846–59. http://dx.doi.org/10.2166/wpt.2015.104.
Der volle Inhalt der QuelleBradji, Abdallah, und Jürgen Fuhrmann. „Some new error estimates for finite element methods for second order hyperbolic equations using the Newmark method“. Mathematica Bohemica 139, Nr. 2 (2014): 125–36. http://dx.doi.org/10.21136/mb.2014.143843.
Der volle Inhalt der QuelleKulkarni, Sachin M., und Dr K. G. Vishwananth. „Analysis for FRP Composite Beams Using Finite Element Method“. Bonfring International Journal of Man Machine Interface 4, Special Issue (30.07.2016): 192–95. http://dx.doi.org/10.9756/bijmmi.8181.
Der volle Inhalt der QuelleIto, Yasuhisa, Hajime Igarashi, Kota Watanabe, Yosuke Iijima und Kenji Kawano. „Non-conforming finite element method with tetrahedral elements“. International Journal of Applied Electromagnetics and Mechanics 39, Nr. 1-4 (05.09.2012): 739–45. http://dx.doi.org/10.3233/jae-2012-1537.
Der volle Inhalt der QuelleYamada, T., und K. Tani. „Finite element time domain method using hexahedral elements“. IEEE Transactions on Magnetics 33, Nr. 2 (März 1997): 1476–79. http://dx.doi.org/10.1109/20.582539.
Der volle Inhalt der QuelleRomero, J. L., und Miguel A. Ortega. „Splines generalizados y solución nodal exacta en el método de elementos finites“. Informes de la Construcción 51, Nr. 464 (30.12.1999): 41–85. http://dx.doi.org/10.3989/ic.1999.v51.i464.872.
Der volle Inhalt der QuelleBurman, Erik, und Peter Hansbo. „Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method“. Applied Numerical Mathematics 62, Nr. 4 (April 2012): 328–41. http://dx.doi.org/10.1016/j.apnum.2011.01.008.
Der volle Inhalt der QuelleMikhaylovskiy, Denis, und Dmytro Matyuschenko. „Numerical researches of DGRP-type experimental frames using the finite elements method“. Odes’kyi Politechnichnyi Universytet. Pratsi, Nr. 2 (20.08.2016): 11–15. http://dx.doi.org/10.15276/opu.2.49.2016.04.
Der volle Inhalt der QuelleMatveev, Aleksandr. „Generating finite element method in constructing complex-shaped multigrid finite elements“. EPJ Web of Conferences 221 (2019): 01029. http://dx.doi.org/10.1051/epjconf/201922101029.
Der volle Inhalt der QuelleDissertationen zum Thema "Finites elements method"
Starkloff, Hans-Jörg. „Stochastic finite element method with simple random elements“. Universitätsbibliothek Chemnitz, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200800596.
Der volle Inhalt der QuelleKleditzsch, Stefan, und Birgit Awiszus. „Modeling of Cylindrical Flow Forming Processes with Numerical and Elementary Methods“. Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-97124.
Der volle Inhalt der QuelleRabadi, Kairas. „PERFORMANCE OF INTERFACE ELEMENTS IN THE FINITE ELEMENT METHOD“. Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2188.
Der volle Inhalt der QuelleM.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering
Adams, Leila. „Finite element method using vector finite elements applied to eddy current problems“. Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/9992.
Der volle Inhalt der QuelleDietzsch, Julian. „Implementierung gemischter Finite-Element-Formulierungen für polykonvexe Verzerrungsenergiefunktionen elastischer Kontinua“. Master's thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-217381.
Der volle Inhalt der QuelleThis paper presents a mixed finite element formulation of Hu-Washizu type (CoFEM) designed to reduce locking effects with respect to a linear and quadratic approximation in space. We consider a hyperelastic, isotropic, polyconvex material formulation as well as transverse isotropy. The resulting nonlinear algebraic equations are solved with a multilevel NEWTON-RAPHSON method. As a numerical example serves a cook-like cantilever beam with a quadratic distribution of in-plane load on the Neumann boundary. We analyze the spatial convergence with respect to the polynomial degree of the underlying Lagrange polynomials and with respect to the level of mesh refinement in terms of algorithmic efficiency
Góis, Wesley. „Método dos elementos finitos generalizados em formulação variacional mista“. Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-14072006-112127/.
Der volle Inhalt der QuelleThis work presents a combination of hybrid-mixed stress model formulation (HMSMF) (Freitas et al. (1996)), to treat plane elasticity problems, with generalized finite element method (GFEM), (Duarte et al. (2000)). GFEM is characterized as a nonconventional formulation of the finite element method (FEM). GFEM is the result of the incorporation of concepts and techniques from meshless methods. One example of these techniques is the nodal enrichment that was formulated in the hp clouds method. Since two fields in domain (stress and displacement) and one in boundary (displacement) are approximated in the HMSMF, different possibilities of nodal enrichment are tested. For the discretization of the hybrid-mixed model quadrilateral finite elements with bilinear shape functions for the domain and linear elements for the boundary were employed. These functions are enriched with polynomial functions, trigonometric functions, polynomials that generate self-equilibrated stress distribution, or, even special functions connected with solutions of fracture problems. An extension of the numerical test cited in Zienkiewicz et al. (1986) is proposed as initial investigation of necessary conditions to assure the stability of the numerical answer. The stability study is completed with the analysis of the Babuka-Brezzi (inf-sup) condition. This last condition is applied to hybrid-mixed enrichment quadrilaterals finite elements by means of a numerical test, denominated inf-sup test, which was developed based on paper of Chapelle and Bathe (1993). Numerical examples reveal that HMSMF is an interesting alternative to obtain good estimates of the stress and displacement fields, using enrichment over some nodes of poor meshes
Tseng, Gordon Bae-Ji. „Investigation of tetrahedron elements using automatic meshing in finite element analysis /“. Online version of thesis, 1992. http://hdl.handle.net/1850/10699.
Der volle Inhalt der QuelleNeto, Dorival Piedade. „Sobre estratégias de resolução numérica de problemas de contato“. Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-14072009-165646/.
Der volle Inhalt der QuelleContact problems represent a class of solid mechanics problems for which the nonlinear behavior is caused by the change of the boundary conditions during the solution process. The present work treats contact problems observing aspects of its formulation and numerical implementation. Specifically, the formulation for two different contact elements is presented, analyzing, in details, the numerical formulation that results from the contact. Some strategies for the computational solution of this class of problems, given by optimization techniques, were implemented in a finite element computational program and were compared and evaluated by numerical examples with different levels of complexity.
Fernandes, Daniel Thomas. „Métodos de Elementos Finitos e Diferenças Finitas para o Problema de Helmholtz“. Laboratório Nacional de Computação Científica, 2009. http://www.lncc.br/tdmc/tde_busca/arquivo.php?codArquivo=167.
Der volle Inhalt der QuelleIt is well known that classical finite elements or finite difference methods for Helmholtz problem present pollution effects that can severely deteriorate the quality of the approximate solution. To control pollution effects is especially difficult on non uniform meshes. For uniform meshes of square elements pollution effects can be minimized with the Quasi Stabilized Finite Element Method (QSFEM) proposed by Babusv ska el al, for example. In the present work we initially present two relatively simple Petrov-Galerkin finite element methods, referred here as RPPG (Reduced Pollution Petrov-Galerkin) and QSPG (Quasi Stabilized Petrov-Galerkin), with reasonable robustness to some type of mesh distortion. The QSPG also shows minimal pollution, identical to QSFEM, for uniform meshes with square elements. Next we formulate the QOFD (Quasi Stabilized Finite Difference) method, a finite difference method for unstructured meshes. The QOFD shows great robustness relative to element distortion, but requires extra work to consider non-essential boundary conditions and source terms. Finally we present a Quasi Optimal Petrov-Galerkin (QOPG) finite element method. To formulate the QOPG we use the same approach introduced for the QOFD, leading to the same accuracy and robustness on distorted meshes, but constructed based on consistent variational formulation. Numerical results are presented illustrating the behavior of all methods developed compared to Galerkin, GLS and QSFEM.
Cardoso, Jose Roberto. „Problemas de campos eletromagnéticos estáticos e dinâmicos; Uma abordagem pelo método dos elementos finitos“. Universidade de São Paulo, 1986. http://www.teses.usp.br/teses/disponiveis/3/3143/tde-11072017-082059/.
Der volle Inhalt der QuelleThe idea of making this work came during a graduation course, \" Special topics on electric machines\", lectured by Prof. Dr. M. Drigas during the 2nd semester of 1980 at EPUSP, when the need of knowing the distribution of magnetic fields in electromechanics devices was notices, in order to foresse its performance during design. At that time, the first work about this subject realized made in Brazil was presented in prof. Janiszewski\'s thesis, where a technique was developed to solve Steady-State Magnetic Fields. However, it is clear that when the time variable is considered, this technique cannot be applied. The usual formulations of the Finite Element Method, published in international journals, was based on Variational Calculations, where the resulting non-linear algebraic equations system is derived from the extreme of a functional, which sometimes cannot be obtained, limiting in this way its application. Consequently, the first aim of this work is to organize procedures to obtain the Finite Method equations system, in order solve non-linear differential equations of fields, without the need of a previous functional for the problem. In Chapter II, one will find some interesting contributions referred to the Finite Element Method formulation, in the description of field problems by the use of non self-adjacent differentials operations.Matrix building techniques are presented in Chapter III, as well as the introduction of boundary conditions in this method. In spite of being an ordinary technique, it will help the beginners a lot, eliminating the need of other sources. Chapter IV presents the necessary formulations, which solve static electromagnetic fields for elements of four square (and curved) sides, and the technique used in the determination of non-linear media reluctivity. In Chapter V, the time variable of electromagnetic fields is treated, making possible the solution of problems of this nature, such as transient phenomena and sinusoidal steady-state. Computer aspects of the work are shown in Chapter VI, presenting resolution routines of the equation system fitted to the problem, and numeric integration routines described by first and second order differential equations, which depend on the time. Some techniques showed in those previous Chapters are specifically used in Chapter VII to obtain the magnetic field distribution, which analyses transformer performance during transients. The coherence of the method is also confirmed.
Bücher zum Thema "Finites elements method"
1943-, Brauer John R., Hrsg. What every engineer should know about finite element analysis. New York: M. Dekker, 1988.
Den vollen Inhalt der Quelle findenL, Logan Daryl, Hrsg. A first course in the finite element method. 3. Aufl. Pacific Grove, CA: Brooks/Cole, 2002.
Den vollen Inhalt der Quelle findenLogan, Daryl L. A first course in the finite element method. 2. Aufl. Boston: PWS-Kent Pub. Co, 1992.
Den vollen Inhalt der Quelle findenA first course in the finite element method. Boston: PWS Engineering, 1986.
Den vollen Inhalt der Quelle findenFinite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. 5. Aufl. Berlin: Springer, 2013.
Den vollen Inhalt der Quelle findenN, Rossettos John, Hrsg. Finite-element method: Basic technique and implementation. Mineola, N.Y: Dover Publications, 2008.
Den vollen Inhalt der Quelle findenR, Whiteman J., und Conference on the Mathematics of Finite Elements and Applications (8th : 1993 : Brunel University), Hrsg. The Mathematics of finite elements and applications: Highlights 1993. Chichester: Wiley, 1994.
Den vollen Inhalt der Quelle findenWriggers, P. Nonlinear finite element methods. Berlin: Springer, 2008.
Den vollen Inhalt der Quelle findenLyu, Yongtao. Finite Element Method. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9.
Der volle Inhalt der QuelleDhatt, Gouri, Gilbert Touzot und Emmanuel Lefrançois. Finite Element Method. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118569764.
Der volle Inhalt der QuelleBuchteile zum Thema "Finites elements method"
Lyu, Yongtao. „Finite Element Analysis Using 3D Elements“. In Finite Element Method, 159–69. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_7.
Der volle Inhalt der QuelleHenwood, David, und Javier Bonet. „Towards a systematic method“. In Finite Elements, 37–50. London: Macmillan Education UK, 1998. http://dx.doi.org/10.1007/978-1-349-13898-2_3.
Der volle Inhalt der QuelleBathe, Klaus-Jürgen. „The finite element method with “overlapping finite elements”“. In Insights and Innovations in Structural Engineering, Mechanics and Computation, 2–7. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315641645-2.
Der volle Inhalt der QuelleErn, Alexandre, und Jean-Luc Guermond. „Projection methods“. In Finite Elements III, 255–66. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57348-5_74.
Der volle Inhalt der QuelleOtsuru, Toru, Takeshi Okuzono, Noriko Okamoto und Yusuke Naka. „Finite Element Method“. In Computational Simulation in Architectural and Environmental Acoustics, 53–78. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54454-8_3.
Der volle Inhalt der QuelleKuna, Meinhard. „Finite Element Method“. In Solid Mechanics and Its Applications, 153–92. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6680-8_4.
Der volle Inhalt der QuelleTekkaya, A. Erman, und Celal Soyarslan. „Finite Element Method“. In CIRP Encyclopedia of Production Engineering, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35950-7_16699-3.
Der volle Inhalt der QuelleÖchsner, Andreas. „Finite Element Method“. In A Project-Based Introduction to Computational Statics, 95–238. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58771-0_3.
Der volle Inhalt der QuelleKoshiba, Masanori. „Finite Element Method“. In Optical Waveguide Theory by the Finite Element Method, 1–51. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1634-3_1.
Der volle Inhalt der QuelleChaskalovic, Joël. „Finite-Element Method“. In Mathematical and Numerical Methods for Partial Differential Equations, 63–109. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03563-5_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Finites elements method"
Addessi, D., P. Di Re, C. Gatta und E. Sacco. „Multiscale finite element modeling linking shell elements to 3D continuum“. In 8th European Congress on Computational Methods in Applied Sciences and Engineering. CIMNE, 2022. http://dx.doi.org/10.23967/eccomas.2022.190.
Der volle Inhalt der QuelleMirotznik, Mark S., Dennis W. Prather und Joseph N. Mait. „Hybrid finite element-boundary element method for vector modeling diffractive optical elements“. In Photonics West '96, herausgegeben von Ivan Cindrich und Sing H. Lee. SPIE, 1996. http://dx.doi.org/10.1117/12.239620.
Der volle Inhalt der QuelleFavier, J. F., und M. Kremmer. „Modeling a Particle Metering Device Using the Finite Wall Method“. In Third International Conference on Discrete Element Methods. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)5.
Der volle Inhalt der QuelleShen, J. „A study of characteristic element length for higher-order finite elements“. In Aerospace Science and Engineering. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902677-33.
Der volle Inhalt der QuelleKomodromos, Petros I., und John R. Williams. „On the Simulation of Deformable Bodies Using Combined Discrete and Finite Element Methods“. In Third International Conference on Discrete Element Methods. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)25.
Der volle Inhalt der QuelleSalami, M. Reza, und Farshad Amini. „Numerical Model for the Implementation of Discontinuous Deformation Analysis in Finite Element Mesh“. In Third International Conference on Discrete Element Methods. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)27.
Der volle Inhalt der QuelleOwen, D. R. J., Y. T. Feng, M. G. Cottrel und J. Yu. „Discrete / Finite Element Modelling of Industrial Applications with Multi-Fracturing and Particulate Phenomena“. In Third International Conference on Discrete Element Methods. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)3.
Der volle Inhalt der QuellePrather, Dennis W., Mark S. Mirotznik und Joseph N. Mait. „Design of subwavelength diffractive optical elements using a hybrid finite element-boundary element method“. In Photonics West '96, herausgegeben von Ivan Cindrich und Sing H. Lee. SPIE, 1996. http://dx.doi.org/10.1117/12.239612.
Der volle Inhalt der QuelleYang, X. S., R. W. Lewis, D. T. Gethin, R. S. Ransing und R. C. Rowe. „Discrete-Finite Element Modelling of Pharmaceutical Powder Compaction: A Two-Stage Contact Detection Algorithm for Non-Spherical Particles“. In Third International Conference on Discrete Element Methods. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)14.
Der volle Inhalt der QuelleManic, Ana B., Branislav M. Notaros und Milan M. Ilic. „Symmetric coupling of finite element method and method of moments using higher order elements“. In 2012 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2012. http://dx.doi.org/10.1109/aps.2012.6348569.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Finites elements method"
Jiang, W., und Benjamin W. Spencer. Modeling 3D PCMI using the Extended Finite Element Method with higher order elements. Office of Scientific and Technical Information (OSTI), März 2017. http://dx.doi.org/10.2172/1409274.
Der volle Inhalt der QuelleBabuska, I., und H. C. Elman. Performance of the h-p Version of the Finite Element Method with Various Elements. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada250689.
Der volle Inhalt der QuelleCosta, Timothy, Stephen D. Bond, David John Littlewood und Stan Gerald Moore. Peridynamic Multiscale Finite Element Methods. Office of Scientific and Technical Information (OSTI), Dezember 2015. http://dx.doi.org/10.2172/1227915.
Der volle Inhalt der QuelleDohrmann, C. R., M. W. Heinstein, J. Jung und S. W. Key. A Family of Uniform Strain Tetrahedral Elements and a Method for Connecting Dissimilar Finite Element Meshes. Office of Scientific and Technical Information (OSTI), Januar 1999. http://dx.doi.org/10.2172/2637.
Der volle Inhalt der QuelleBabuska, Ivo, Uday Banerjee und John E. Osborn. Superconvergence in the Generalized Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, Januar 2005. http://dx.doi.org/10.21236/ada440610.
Der volle Inhalt der QuelleCoyle, J. M., und J. E. Flaherty. Adaptive Finite Element Method II: Error Estimation. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada288358.
Der volle Inhalt der QuelleBabuska, I., und J. M. Melenk. The Partition of Unity Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, Juni 1995. http://dx.doi.org/10.21236/ada301760.
Der volle Inhalt der QuelleZheng, Jinhui, Matteo Ciantia und Jonathan Knappett. On the efficiency of coupled discrete-continuum modelling analyses of cemented materials. University of Dundee, Dezember 2021. http://dx.doi.org/10.20933/100001236.
Der volle Inhalt der QuelleDuarte, Carlos A. A Generalized Finite Element Method for Multiscale Simulations. Fort Belvoir, VA: Defense Technical Information Center, Mai 2012. http://dx.doi.org/10.21236/ada577139.
Der volle Inhalt der QuelleManzini, Gianmarco, und Vitaliy Gyrya. Final Report of the Project "From the finite element method to the virtual element method". Office of Scientific and Technical Information (OSTI), Dezember 2017. http://dx.doi.org/10.2172/1415356.
Der volle Inhalt der Quelle