Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „FLASH CHAMBER“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "FLASH CHAMBER" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "FLASH CHAMBER"
Bock, Peter, Joachim Heintze, Thomas Kunst, Bernhard Schmidt und Ludek Smolìk. „Drift chamber readout with flash ADCs“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 242, Nr. 2 (Januar 1986): 237–46. http://dx.doi.org/10.1016/0168-9002(86)90215-9.
Der volle Inhalt der QuelleSiddique, Sarkar, Harry E. Ruda und James C. L. Chow. „FLASH Radiotherapy and the Use of Radiation Dosimeters“. Cancers 15, Nr. 15 (30.07.2023): 3883. http://dx.doi.org/10.3390/cancers15153883.
Der volle Inhalt der QuelleKhamis Mansour, M., und Hassan E. S. Fath. „Comparative study for different demister locations in multistage flash (MSF) flash chamber (FC)“. Desalination and Water Treatment 51, Nr. 40-42 (Dezember 2013): 7379–93. http://dx.doi.org/10.1080/19443994.2013.779940.
Der volle Inhalt der QuelleWu, Haoyu, Weimin Liu, Xiaoming Li, Fengyun Chen und Longbin Yang. „Simulation analysis on flashing process in flash chamber“. IOP Conference Series: Earth and Environmental Science 300 (09.08.2019): 052022. http://dx.doi.org/10.1088/1755-1315/300/5/052022.
Der volle Inhalt der QuelleLv, Henghua, Yan Wang, Lianying Wu und Yangdong Hu. „Numerical simulation and optimization of the flash chamber for multi-stage flash seawater desalination“. Desalination 465 (September 2019): 69–78. http://dx.doi.org/10.1016/j.desal.2019.04.032.
Der volle Inhalt der QuelleWu, Jian, Jiakun Du, Hong Chen, Yuhuai Li, Wenfeng Zhan, Guangquan Wu und Lin Ye. „Experimental study on flash-boiling spray structure of multi-hole gasoline direct injection injector in a constant volume chamber“. International Journal of Spray and Combustion Dynamics 12 (Januar 2020): 175682772093243. http://dx.doi.org/10.1177/1756827720932431.
Der volle Inhalt der QuelleKhamis Mansour, M., und Hassan E. S. Fath. „Numerical simulation of flashing process in MSF flash chamber“. Desalination and Water Treatment 51, Nr. 10-12 (Februar 2013): 2231–43. http://dx.doi.org/10.1080/19443994.2012.734729.
Der volle Inhalt der QuelleMalik, A. U., M. Mobin, I. N. Andijani, S. Al-Fozan und A. Al-Hamed. „Investigations on the corrosion of flash chamber floor plates in a multistage flash desalination plant“. Journal of Failure Analysis and Prevention 6, Nr. 6 (Dezember 2006): 19–24. http://dx.doi.org/10.1361/154770206x156222.
Der volle Inhalt der QuelleZhao, Zirui, Xinyu Zhang, Mengjun Gong, Mengrong Chen und Yong Ren. „Numerical Simulation of Cavitation and FlashBoiling in GDI Nozzle and Spray“. Journal of Physics: Conference Series 2454, Nr. 1 (01.03.2023): 012011. http://dx.doi.org/10.1088/1742-6596/2454/1/012011.
Der volle Inhalt der QuelleTang, Yan Fei, Chao Ding, Ya Ping He, De Chuang Zhou und Jian Wang. „Studies on the Effect of Altitude on the Flammable Liquids' Flash Point“. Advanced Materials Research 908 (März 2014): 345–48. http://dx.doi.org/10.4028/www.scientific.net/amr.908.345.
Der volle Inhalt der QuelleDissertationen zum Thema "FLASH CHAMBER"
Chardin, Gabriel. „Recherche de muons souterrains en provenance de la direction de Cygnus X-3 dans le détecteur de Fréjus : Cygnus X-3 à haute énergie : être ou ne pas être“. Paris 11, 1987. http://www.theses.fr/1987PA112015.
Der volle Inhalt der QuelleSANGADE, NIKHIL VASANT. „PERFORMANCE EVALUATION OF MULTI EVAPORATOR VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH LIQUID-VAPOUR HEAT EXCHANGER AND FLASH CHAMBER USING ALTERNATIVE PURE REFRIGERANTS“. Thesis, 2016. http://dspace.dtu.ac.in:8080/jspui/handle/repository/15374.
Der volle Inhalt der QuelleBücher zum Thema "FLASH CHAMBER"
Anderson, Evelyn. Flesh Palace: Chamber of the Tourture Prince. Independently Published, 2019.
Den vollen Inhalt der Quelle findenDavis, F. A. Pkg: Flash Cards for Diff Inst and Diff Surg Inst 2e and Surg Equip and Supplies 2e and Goldman Pkt Gde to or 3e and Chambers Surg Tech Rev. Davis Company, F. A., 2016.
Den vollen Inhalt der Quelle findenDavis, F. A. Pkg: Flash Cards for Diff Inst and Diff Surg Inst 2e and Surg Equip and Supplies 2e and Goldman Pkt Gde to or 3e and Chambers Surg Tech Rev and Tabers 22e. Davis Company, F. A., 2016.
Den vollen Inhalt der Quelle findenRutherford, Colleen J., und F. A. Davis Company Staff. Pkg: Flash Cards for Diff Inst and Diff Surg Inst 2e and Diff Surg Equip and Supplies and Goldman Pkt Gde to or 3e and Chambers Surg Tech Rev and Tabers 22e. Davis Company, F. A., 2013.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "FLASH CHAMBER"
Gärtner, Jan Wilhelm, Daniel D. Loureiro und Andreas Kronenburg. „Modelling and Simulation of Flash Evaporation of Cryogenic Liquids“. In Fluid Mechanics and Its Applications, 233–50. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09008-0_12.
Der volle Inhalt der QuelleRees, Andreas, und Michael Oschwald. „Experimental Investigation of Transient Injection Phenomena in Rocket Combusters at Vacuum with Cryogenic Flash Boiling“. In Fluid Mechanics and Its Applications, 211–31. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09008-0_11.
Der volle Inhalt der QuelleAnaya-Reyes, Orlando, David A. Rodriguez-Alejandro, Alejandro Zaleta-Aguilar und Sergio Cano-Andrade. „Exergetic Analysis of a Double Flash Geothermal Plant Integrated with a Central Solar Receiver“. In Proceedings of the XV Ibero-American Congress of Mechanical Engineering, 244–50. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-38563-6_36.
Der volle Inhalt der QuelleSchwartz, C., M. Comet, F. Schnell und D. Spitzer. „The Properties of Detonating Compositions Prepared from Submicron KClO4 and TiH2“. In Future Developments in Explosives and Energetics, 158–63. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781839162350-00158.
Der volle Inhalt der QuelleSchwartz, C., M. Comet, F. Schnell und D. Spitzer. „The Properties of Detonating Compositions Prepared from Submicron KClO4 and TiH2“. In Future Developments in Explosives and Energetics, 158–63. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781788017855-00158.
Der volle Inhalt der QuelleAvery, William H., und Chih Wu. „Open-Cycle OTEC“. In Renewable Energy from the Ocean. Oxford University Press, 1994. http://dx.doi.org/10.1093/oso/9780195071993.003.0012.
Der volle Inhalt der QuelleTrollope, Anthony. „Guilty, or Not Guilty“. In Orley Farm. Oxford University Press, 2018. http://dx.doi.org/10.1093/owc/9780198803744.003.0014.
Der volle Inhalt der QuelleMantravadi, Anand. „New Surgical Techniques“. In Glaucoma. Oxford University Press, 2012. http://dx.doi.org/10.1093/oso/9780199757084.003.0019.
Der volle Inhalt der Quelle„coating layer itself, an d at the interface between the coating and the substrate, causes instant fracturing and separation of coating material from the surface. In general, if a coating or contaminant is CHEMICALLY bonded to a surface, dry ice particle blasting will NOT effectively remove the coating. If the bond is PHYSICAL o r MECHANICAL in nature, such as a coating of rubber residue which is "anchored" into the porous surface of an aluminum casting, then there is a good chance that dr y ice blasting will work. Contaminants which are etched, or stained into the surfaces of metals, ceramics, plastics, or other materials typically cannot be removed with dry ice blasting. If the surface of the substrate is extremely porous or rough, providing strong mechanical "anchoring" for the contaminant or coating, dr y ice blasting may not be able to remove all of the coating, or the rate of removal may be too slow to allow dry ice blasting to be cost effective. The classic example of a contaminant that does NOT respond to dry ice blast-ing is RUST. Rust is both chemically and strongly mechanically bonded to steel substrate. Advanced stages of rust must be "chiseled" away with abrasive sand blasting. Only the thin film of powderized "flash" rust on a fresh steel surface can be effectively removed with dry ice blasting. 4.2.1.1. Inductio n (venturi) and direct acceleration blast systems - the effect of the typ e of system on available kinetic energy In a two-hose induction (venturi) carbon dioxide blastin g system, the medium particles are moved from the hopper to the "gun" chamber by suction, where they drop to a very low velocity before being induced into the outflow of the nozzle by a large flow volume of compressed air. Some more advanced two-hose systems employ a small positive pressure to the pellet delivery hose. In any type of two-hose system, since the blast medium particles have only a short distance in which to gain momentum and accelerate to the nozzle exit (usually only 200 to 300 mm), the final particle average velocity is limited to between 60 and 120 meters per second. So, in general, two-hose systems, although not so costly, are limited in their ability to deliver contaminant removal kinetic energy to the surface to be cleaned. When more blasting energy is required, these systems must be "boosted" a t the expense of much more air volume required, and higher blast pressure is re-quired as well, with much more nozzle back thrust, and very much more blast noise generated at the nozzle exit plane. The other type of solid carbon dioxide medium blasting system is like the "pressurized pot" abrasive blasting system common in the sand blasting and Plas-ti c Media Blasting industries. These systems use a single delivery hose from the hopper to the "nozzle" applicator in which both the medium particles and the compressed air travel. These systems are more complex and a little more costly than the inductive two-hose systems, but the advantages gained greatly outweigh the extra initial expense. In a single-hose solid carbon dioxide particle blasting system, sometimes referred to as a "direct acceleration " system, the medium is introduced from the hopper into a single, pre-pressurized blast hose through a sealed airlock feeder. The particles begin their acceleration and velocity increase“. In Surface Contamination and Cleaning, 162–63. CRC Press, 2003. http://dx.doi.org/10.1201/9789047403289-25.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "FLASH CHAMBER"
Abutayeh, Mohammad, und Yogi Goswami. „Solar Flash Desalination Under Hydrostatically Sustained Vacuum“. In ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/es2008-54075.
Der volle Inhalt der QuelleLitvinov, Petr A. „Flash Chamber of a Quasi-Continuous Volume Source of Negative Ions“. In PRODUCTION AND NEUTRALIZATION OF NEGATIVE IONS AND BEAMS: 10th International Symposium on Production and Neutralization of Negative Ions and Beams. AIP, 2005. http://dx.doi.org/10.1063/1.1908299.
Der volle Inhalt der QuelleMatsuda, Yoshitaka, Ryoichi Sakai, Takenao Sugi, Satoru Goto, Takeshi Yasunaga und Yasuyuki Ikegami. „Water Level Control of Flash Chamber in a Spray Flash Desalination System with Valve Dynamics and Flow Rate Limitation“. In 2019 19th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2019. http://dx.doi.org/10.23919/iccas47443.2019.8971571.
Der volle Inhalt der QuelleAbdel-Rahim, Yousef M. „Monte Carlo Optimization of Two-Stage Cascade R134A Refrigeration System With Flash Chamber“. In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49063.
Der volle Inhalt der QuelleAkram, Muhammad Saad, Maryam Yeganeh, Qiang Cheng, Ossi Kaario und Martti Larmi. „Experimental Study on Flash Boiling of Ammonia Fuel Sprays – A Potential Alternative Fuel“. In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0304.
Der volle Inhalt der QuelleIslam, Md, F. Banat, A. Baba und S. Abuyahya. „Design and Development of a Small Multistage Flash Desalination System Using Aspen HYSYS“. In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-4975.
Der volle Inhalt der QuelleKay, Peter J., Andrew P. Crayford, Philip J. Bowen und James Luxford. „Flammability of High Flash Point Liquid Fuels“. In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-69536.
Der volle Inhalt der QuelleBjorgen, Karl Oskar Pires, Inge Saanum, Stian Bratsberg, Patrick Jørgensen, Terese Lovas und David Emberson. „Enhanced Combustion by Photo Ignition of Carbon Nanotubes in a Constant Volume Chamber“. In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0406.
Der volle Inhalt der QuelleAbutayeh, Mohammad, D. Yogi Goswami und Elias K. Stefanakos. „Sustainable Desalination Process Simulation“. In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37182.
Der volle Inhalt der QuelleNocivelli, Lorenzo, Junhao Yan, Kaushik Saha, Gina M. Magnotti, Chia-Fon Lee und Sibendu Som. „Effect of Ambient Pressure on the Behavior of Single-Component Fuels in a Gasoline Multi-Hole Injector“. In ASME 2019 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/icef2019-7258.
Der volle Inhalt der Quelle