Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Formulation of Nanocomposite Materials“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Formulation of Nanocomposite Materials" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Formulation of Nanocomposite Materials"
Vafaeva, Khristina Maksudovna, Abhishek Chhetri, Prerak Sudan, Mukul Mishra, B. Pakkiraiah und Chandra Mohan. „Polymer Matrix Nanocomposites for Sustainable Packaging: A Green Approach“. E3S Web of Conferences 511 (2024): 01008. http://dx.doi.org/10.1051/e3sconf/202451101008.
Der volle Inhalt der QuelleVafaeva, Khristina Maksudovna, Abhishek Chhetri, Prerak Sudan, Mukul Mishra, B. Sankara Babu und Binitendra Naath Mongal. „Polymer Matrix Nanocomposites for Sustainable Packaging: A Green Approach“. E3S Web of Conferences 537 (2024): 08001. http://dx.doi.org/10.1051/e3sconf/202453708001.
Der volle Inhalt der QuelleCarrascosa, Ana, Jaime S. Sánchez, María Guadalupe Morán-Aguilar, Gemma Gabriel und Fabiola Vilaseca. „Advanced Flexible Wearable Electronics from Hybrid Nanocomposites Based on Cellulose Nanofibers, PEDOT:PSS and Reduced Graphene Oxide“. Polymers 16, Nr. 21 (29.10.2024): 3035. http://dx.doi.org/10.3390/polym16213035.
Der volle Inhalt der QuelleMarin, Maria Minodora, Ioana Catalina Gifu, Gratiela Gradisteanu Pircalabioru, Madalina Albu Kaya, Rodica Roxana Constantinescu, Rebeca Leu Alexa, Bogdan Trica et al. „Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing“. Gels 9, Nr. 5 (19.05.2023): 425. http://dx.doi.org/10.3390/gels9050425.
Der volle Inhalt der QuelleHAFEZ, INAS H., MOHAMED R. BERBER, KEIJI MINAGAWA, TAKESHI MORI und MASAMI TANAKA. „FORMULATION OF POLYACRYLIC ACID-LAYERED DOUBLE HYDROXIDE COMPOSITE SYSTEM AS A SOIL CONDITIONER FOR WATER MANAGEMENT“. International Journal of Modern Physics: Conference Series 06 (Januar 2012): 138–43. http://dx.doi.org/10.1142/s2010194512003078.
Der volle Inhalt der QuelleGatos, K. G., A. A. Apostolov und J. Karger-Kocsis. „Compatibilizer Effect of Grafted Glycidyl Methacrylate on EPDM/Organoclay Nanocomposites“. Materials Science Forum 482 (April 2005): 347–50. http://dx.doi.org/10.4028/www.scientific.net/msf.482.347.
Der volle Inhalt der QuellePinto, Susana C., Paula A. A. P. Marques, Romeu Vicente, Luís Godinho und Isabel Duarte. „Hybrid Structures Made of Polyurethane/Graphene Nanocomposite Foams Embedded within Aluminum Open-Cell Foam“. Metals 10, Nr. 6 (09.06.2020): 768. http://dx.doi.org/10.3390/met10060768.
Der volle Inhalt der QuelleGuz, Alexander N., und Jeremiah J. Rushchitsky. „Some Fundamental Aspects of Mechanics of Nanocomposite Materials and Structural Members“. Journal of Nanotechnology 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/641581.
Der volle Inhalt der QuelleReddy, J. N., Vinu U. Unnikrishnan und Ginu U. Unnikrishnan. „Recent advances in the analysis of nanotube-reinforced polymeric biomaterials“. Journal of the Mechanical Behavior of Materials 22, Nr. 5-6 (01.12.2013): 137–48. http://dx.doi.org/10.1515/jmbm-2013-0021.
Der volle Inhalt der QuelleNajem Abed, Nisreen Abdul Rahman, Suha Mujahed Abudoleh, Iyad Daoud Alshawabkeh, Abdul Rahman Najem Abed, Rasha Khaled Ali Abuthawabeh und Samer Hasan Hussein-Al-Ali. „Aspirin Drug Intercalated into Zinc-Layered Hydroxides as Nanolayers: Structure and In Vitro Release“. Nano Hybrids and Composites 18 (November 2017): 42–52. http://dx.doi.org/10.4028/www.scientific.net/nhc.18.42.
Der volle Inhalt der QuelleDissertationen zum Thema "Formulation of Nanocomposite Materials"
Acquadro, Julien. „Étude des propriétés tribologiques et électriques de revêtements sol-gel comme alternative anticorrosion au cadmium et au chrome hexavalent pour la connectique en environnements sévères“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST150.
Der volle Inhalt der QuelleConnector technology involves the components that create electrical connections between different systems. In critical sectors such as aerospace and military, these connections must be highly reliable and able to perform under harsh conditions. Therefore, the electrical contacts within connectors are protected by housings made from aluminium alloys, like AA6061, which must meet three essential criteria: electrical conductivity, mechanical strength, and corrosion resistance. Currently, these properties are achieved through surface protection coatings based on cadmium passivated with hexavalent chromium (VI). However, since 2017, this solution has been deemed unacceptable in Europe due to evolving RoHS and REACH directives and regulations, given the severe toxicity of cadmium and hexavalent chromium to both the environment and human health.This thesis is part of a significant industrial collaboration involving seven partners focused on developing and producing coatings to replace cadmium passivated with chromium (VI). Among the various approaches explored, the most innovative and promising involves using sol-gel coatings made conductive through the incorporation of appropriate conductive fillers. The strategy entails implementing these coatings at the laboratory scale and subjecting them to rigorous industrial qualification tests on connector housings.This thesis aims to enhance understanding of how various stages in the development of coatings affect their properties related to electrical conduction, wear resistance, and anti-corrosion capabilities. Deposits applied to laboratory model specimens were studied at both macroscopic and microscopic scales to determine the optimal synthesis parameters. These parameters include sol-gel precursors, amount of water, maturation conditions, and deposition techniques, all of which are adjusted based on the physicochemical and structural properties of the resulting films. The influence of the type and quantity of conductive fillers, whether carbon-based or metallic, on properties such as electrical conduction, wear resistance, mechanical strength, and corrosion protection, was rigorously evaluated.Periodic comparisons were made between these study results and the outcomes of qualification tests conducted on industrially complex connector housings coated with the same formulations. This allowed the identification of challenges to overcome in achieving the necessary properties of electrical conduction, mechanical strength, and corrosion resistance. These efforts also provide development prospects for the future of this technology in the connector industry
Oyharçabal, Mathieu. „Synthèse, formulation, et mise en oeuvre de nanomatériaux conducteurs base poly(aniline) / nanotubes de carbone pour des applications micro-ondes“. Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14633.
Der volle Inhalt der QuelleThis thesis deals with the formulation of electrically conductive nanocomposites for microwave applications. The main purpose is to process radar-absorbent materials, more particularly at the X band. (8-12 GHz). Polyaniline and carbon nanotubes, dispersed in an epoxyde matrix, have been selected. Different morphologies of polyaniline have been synthesized to study its impact on the absorption properties of composites. Using flake-like polyaniline showing high anisotropy and aspect ratio increases conductivity and dielectric losses of composites. Moreover, its association with carbon nanotubes significantly improves the absorption properties at microwaves frequencies. Efficient radar absorbing screens, showing reflection losses lower than -20 dB, have been calculated and processed confirming the potential of these materials for stealth applications
PAMMI, SRI LAXMI. „CARBON NANOCOMPOSITE MATERIALS“. University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1069881274.
Der volle Inhalt der QuelleThomas, Michael David Ross. „Electrical phenomena in nanocomposite materials“. Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621926.
Der volle Inhalt der QuelleBobrinetskiy, I. I., A. Y. Gerasimenko, L. Ichkitidze, O. R. Khrolova, R. V. Morozov, V. M. Podgaetsky und S. V. Selishchev. „Nanocomposite Materials for Cell Growth“. Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35452.
Der volle Inhalt der QuelleLee, Ji Hoon. „Tensegrity-inspired nanocomposite structures“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44839.
Der volle Inhalt der QuelleBera, Chandan. „Thermo electric properties of nanocomposite materials“. Phd thesis, Ecole Centrale Paris, 2010. http://tel.archives-ouvertes.fr/tel-00576360.
Der volle Inhalt der QuelleYani, Yin. „Molecular dynamics simulation of nanocomposite materials“. [Ames, Iowa : Iowa State University], 2009.
Den vollen Inhalt der Quelle findenDi, Carlo Lidia. „Nanocomposite cathodic materials for secondary cells“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17765.
Der volle Inhalt der QuelleHexagonal tungsten bronze (HTB)-FeF3∙0.33H2O xerogel and HTB-FeF3∙0.33H2O/GO nanocomposite were firstly obtained by a room temperature fluorolytic sol-gel approach in MeOH, and their electrochemical properties evaluated. Operando Mössbauer spectroscopy and X-Ray diffraction were employed to investigate the reaction mechanism during reaction with lithium. The fluoride evidenced a complex behavior, with structural collapse of the HTB phase and gradual transformation into FeF2-rutile-like nanodomains, becoming the predominant component all along the reaction. XRD confirmed the amorphization of the electroactive material. Structural optimization of HTB-FeF3·0.33H2O was then achieved by a microwave-assisted fluorolytic sol-gel in benzyl alcohol. The procedure allowed the synthesis of phase pure nanoparticles of ~30 nm in diameter, along with the production of a reduced graphene oxide (RGO)-based nanocomposite and the reduction of reaction times. Deposition onto conductive RGO resulted beneficial for the electrochemical performance of the fluoride, which was able to sustain repeated cycling at different C-rates and recovered full capacity after more than 50 cycles with respect to the unsupported HTB-FeF3·0.33H2O. Aiming at the production of active ions-holding materials to solve safety issues related to the use of metallic anodes, necessary with structures such as HTB-FeF3·0.33H2O, Na-containing hexafluoroferrate nanocomposites were produced using RGO and partially oxidized carbon black (ox-CB) as conductive carbons. Carbon type greatly affected the electrochemical performance, whose best improvement was obtained using RGO as support
Ye, Yueping. „Microstructure and properties of epoxy/halloysite nanocomposite /“. View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20YE.
Der volle Inhalt der QuelleBücher zum Thema "Formulation of Nanocomposite Materials"
Sun, Rong, Ruxu Du und Yu Shuhui. Functional nanocomposite materials. Durnten-Zurich: Trans Tech Publishing, 2012.
Den vollen Inhalt der Quelle findenGulati, Shikha, Hrsg. Chitosan-Based Nanocomposite Materials. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5338-5.
Der volle Inhalt der QuelleMittal, Vikas. Advances in polymer nanocomposite technology. Hauppauge, NY: Nova Science Publishers, 2009.
Den vollen Inhalt der Quelle findenMahler, Erne, und Detlev Seiler. Carbon nanotube and nanocomposite research. Hauppauge, N.Y: Nova Science Publishers, 2011.
Den vollen Inhalt der Quelle findenKar, Kamal K., Hrsg. Handbook of Nanocomposite Supercapacitor Materials III. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68364-1.
Der volle Inhalt der QuelleKar, Kamal K., Hrsg. Handbook of Nanocomposite Supercapacitor Materials II. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52359-6.
Der volle Inhalt der QuelleKar, Kamal K., Hrsg. Handbook of Nanocomposite Supercapacitor Materials I. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43009-2.
Der volle Inhalt der QuelleAvalos Belmontes, Felipe, Francisco J. González und Miguel Ángel López-Manchado, Hrsg. Green-Based Nanocomposite Materials and Applications. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18428-4.
Der volle Inhalt der QuelleKar, Kamal K., Hrsg. Handbook of Nanocomposite Supercapacitor Materials IV. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23701-0.
Der volle Inhalt der QuellePogrebnjak, Alexander D., Yang Bing und Martin Sahul, Hrsg. Nanocomposite and Nanocrystalline Materials and Coatings. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2667-7.
Der volle Inhalt der QuelleBuchteile zum Thema "Formulation of Nanocomposite Materials"
Salam, Haipan, und Yu Dong. „Properties of Optimal Material Formulation of Bioepoxy/Clay Nanocomposites“. In Bioepoxy/Clay Nanocomposites, 171–99. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_6.
Der volle Inhalt der QuelleSalam, Haipan, und Yu Dong. „Morphological Structures of Bioepoxy/Clay Nanocomposites with Optimum Material Formulation“. In Bioepoxy/Clay Nanocomposites, 145–70. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_5.
Der volle Inhalt der QuelleParameswaranpillai, Jyotishkumar, Nishar Hameed, Thomas Kurian und Yingfeng Yu. „Introduction to Nanomaterials and Nanocomposites“. In Nanocomposite Materials, 1–4. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-2.
Der volle Inhalt der QuelleGatos, K. G., und Y. W. Leong. „Classification of Nanomaterials and Nanocomposites“. In Nanocomposite Materials, 5–36. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-3.
Der volle Inhalt der QuelleRamazani S.A., A., Y. Tamsilian und M. Shaban. „Synthesis of Nanomaterials“. In Nanocomposite Materials, 37–80. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-4.
Der volle Inhalt der QuelleRodriguez, Veronica Marchante, und Hrushikesh A. Abhyankar. „Optical Properties of Nanomaterials“. In Nanocomposite Materials, 81–103. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-5.
Der volle Inhalt der QuelleGashti, Mazeyar Parvinzadeh, Farbod Alimohammadi, Amir Kiumarsi, Wojciech Nogala, Zhun Xu, William J. Eldridge und Adam Wax. „Microscopy of Nanomaterials“. In Nanocomposite Materials, 105–28. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-6.
Der volle Inhalt der QuelleShokoohi, Shirin, Ghasem Naderi und Aliasghar Davoodi. „Mechanical Properties of Nanomaterials“. In Nanocomposite Materials, 129–45. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-7.
Der volle Inhalt der QuelleNasirpouri, Farzad. „Electrodeposited Nanocomposite Films“. In Electrodeposition of Nanostructured Materials, 289–310. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44920-3_7.
Der volle Inhalt der QuelleSalam, Haipan, und Yu Dong. „The Effects of Material Formulation and Manufacturing Process on Mechanical and Thermal Properties of Conventional Epoxy/Clay Nanocomposites“. In Bioepoxy/Clay Nanocomposites, 97–112. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Formulation of Nanocomposite Materials"
Advincula, Rigoberto C. „Superhydrophobic and Nanostructured HPHT Stable Polybenzoxazine Nanocomposite Coatings for Oil and Gas“. In CORROSION 2019, 1–7. NACE International, 2019. https://doi.org/10.5006/c2019-13524.
Der volle Inhalt der QuelleLEPADATU, Daniel, Loredana JUDELE, Ioana ENTUC, Eduard PROASPAT und Gabriel SANDULACHE. „NANOPARTICLES AND RECYCLABLE WASTE IN CONSTRUCTION MATERIALS. FROM PRACTICAL NECESSITY TO ADVANCED SOLUTIONS“. In SGEM International Multidisciplinary Scientific GeoConference, 231–38. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024v/6.2/s25.29.
Der volle Inhalt der QuelleTian, Zhiting, Sang Kim, Ying Sun und Bruce White. „A Molecular Dynamics Study of Thermal Conductivity in Nanocomposites via the Phonon Wave Packet Method“. In ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89272.
Der volle Inhalt der QuelleTallman, T. N. „Strain Estimation From Conductivity Changes in Piezoresistive Nanocomposites“. In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9012.
Der volle Inhalt der QuelleTalamadupula, Krishna Kiran, und Gary D. Seidel. „Multiscale Modeling of Effective Piezoresistivity and Implementation of Non-Local Damage Formulation in Nanocomposite Bonded Explosives“. In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0903.
Der volle Inhalt der QuelleZhao, Dongfang, Jacob Meves, Anirban Mondal, Mrinal C. Saha und Yingtao Liu. „Additive Manufacturing of Embedded Strain Sensors in Structural Composites“. In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94366.
Der volle Inhalt der QuelleLuo, Wenyuan, Yingtao Liu, Mrinal Saha, Steven Patterson und Thomas Robison. „Fabrication, Optimization, and Characterization of PDMS/CNF Nanocomposite Sensor Arrays“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86269.
Der volle Inhalt der QuelleUttley, Katherine, Anika Galvan, Matthew Nakatsuka und Marco Basile. „High Temperature Compatible, Field-Deployable Heat Exchanger Nanocomposite Treatments“. In Offshore Technology Conference. OTC, 2024. http://dx.doi.org/10.4043/35384-ms.
Der volle Inhalt der QuelleBayar, Selen, Feridun Delale, Benjamin Liaw, Jackie Ji Li, Jerry Chung, Matthew Dabrowski und Ramki Iyer. „An In-Depth Study on the Mechanical and Thermal Properties of Nanoclay Reinforced Polymers at Various Temperatures“. In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37341.
Der volle Inhalt der QuelleHernandez, J. A., H. Zhu, F. Semperlotti und T. N. Tallman. „The Transient Response of Piezoresistive CNF-Modified Epoxy Rods to One-Dimensional Wave Packet Excitation“. In ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-67801.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Formulation of Nanocomposite Materials"
Roy, R., und S. Komarneni. Multifunctional nanocomposite materials. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/6977177.
Der volle Inhalt der QuelleHunt, A. J., M. Ayers und W. Cao. Aerogel nanocomposite materials. Office of Scientific and Technical Information (OSTI), Mai 1995. http://dx.doi.org/10.2172/105119.
Der volle Inhalt der QuelleRoy, R., und S. Komarneni. Multifunctional nanocomposite materials. Progress report. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10187528.
Der volle Inhalt der QuelleStormont, John. Wellbore Seal Repair Using Nanocomposite Materials. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1337552.
Der volle Inhalt der QuelleCollins, Eric, Michelle Pantoya, Andreas A. Neuber, Michael Daniels und Daniel Prentice. Piezoelectric Ignition of Nanocomposite Energetic Materials. Fort Belvoir, VA: Defense Technical Information Center, Januar 2013. http://dx.doi.org/10.21236/ada597296.
Der volle Inhalt der QuellePotter, Jr, und Barrett G. Optoelectronic Nanocomposite Materials for Thin Film Photovoltaics. Fort Belvoir, VA: Defense Technical Information Center, Juni 2012. http://dx.doi.org/10.21236/ada562250.
Der volle Inhalt der QuelleKrishnan, Sitaraman, John McLaughlin und Dipankar Roy. Novel Nanocomposite Materials for Solar Cell Fabrication. Fort Belvoir, VA: Defense Technical Information Center, Januar 2012. http://dx.doi.org/10.21236/ada570684.
Der volle Inhalt der QuellePantoya, Michelle L. Combustion and Ignition Studies of Nanocomposite Energetic Materials. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2010. http://dx.doi.org/10.21236/ada545482.
Der volle Inhalt der QuelleHash, M. C., V. N. Zyryanov, J. K. Basco und D. B. Chamberlain. Fissile Materials Disposition Formulation Report. Office of Scientific and Technical Information (OSTI), Juni 1999. http://dx.doi.org/10.2172/802089.
Der volle Inhalt der QuelleHaglund, Jr., Richard F. Linear and Nonlinear Optical Properties of Metal Nanocomposite Materials. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1481179.
Der volle Inhalt der Quelle