Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „FRAGILT CURVE“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "FRAGILT CURVE" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "FRAGILT CURVE"
Grigoriu, M., und A. Radu. „Are seismic fragility curves fragile?“ Probabilistic Engineering Mechanics 63 (Januar 2021): 103115. http://dx.doi.org/10.1016/j.probengmech.2020.103115.
Der volle Inhalt der QuelleWu, Yun Dan, Xiao Yao und Shi Jun Zhou. „Seismic Fragility Analysis for Typical Multi-Span Simply Supported Railway Box Girder Bridges“. Applied Mechanics and Materials 858 (November 2016): 137–44. http://dx.doi.org/10.4028/www.scientific.net/amm.858.137.
Der volle Inhalt der QuelleKim, Beom-Jin, Minkyu Kim, Daegi Hahm, Junhee Park und Kun-Yeun Han. „Probabilistic Flood Assessment Methodology for Nuclear Power Plants Considering Extreme Rainfall“. Energies 14, Nr. 9 (01.05.2021): 2600. http://dx.doi.org/10.3390/en14092600.
Der volle Inhalt der QuelleWijayanti, Erlin, Stefanus Kristiawan, Edy Purwanto und Senot Sangadji. „Seismic Vulnerability of Reinforced Concrete Building Based on the Development of Fragility Curve: A Case Study“. Applied Mechanics and Materials 845 (Juli 2016): 252–58. http://dx.doi.org/10.4028/www.scientific.net/amm.845.252.
Der volle Inhalt der QuelleFatimah, Samreen, und Jenna Wong. „Sensitivity of the Fragility Curve on Type of Analysis Methods, Applied Ground Motions and Their Selection Techniques“. International Journal of Steel Structures 21, Nr. 4 (26.06.2021): 1292–304. http://dx.doi.org/10.1007/s13296-021-00503-z.
Der volle Inhalt der QuelleWu, Tong, Luyao Wang, Liyang Zhao, Gangping Fan, Jiahui Wang, Lihui Yin, Shuang Zhang und Shengchun Liu. „Seismic Fragility of a Multi-Frame Box-Girder Bridge Influenced by Seismic Excitation Angles and Column Height Layouts“. Buildings 12, Nr. 3 (21.03.2022): 387. http://dx.doi.org/10.3390/buildings12030387.
Der volle Inhalt der QuelleKaplan, Stan, Vicki M. Bier und Dennis C. Bley. „A note on families of fragility curves—is the composite curve equivalent to the mean curve?“ Reliability Engineering & System Safety 43, Nr. 3 (Januar 1994): 257–61. http://dx.doi.org/10.1016/0951-8320(94)90029-9.
Der volle Inhalt der QuelleChoi, Seung Hun, Hee Jung Ham und Sungsu Lee. „Assessment of Building Vulnerability Curve Subjected to Debris-Flow“. Journal of the Korean Society of Hazard Mitigation 20, Nr. 5 (31.10.2020): 11–20. http://dx.doi.org/10.9798/kosham.2020.20.5.11.
Der volle Inhalt der QuelleWaenpracha, Suthiwat, Piyawat Foytong, Anawat Suppasri, Supakorn Tirapat, Nuttawut Thanasisathit, Pongnathee Maneekul und Teraphan Ornthammarath. „Development of Fragility Curves for Reinforced-Concrete Building with Masonry Infilled Wall under Tsunami“. Advances in Civil Engineering 2023 (14.03.2023): 1–15. http://dx.doi.org/10.1155/2023/8021378.
Der volle Inhalt der QuelleDang, Thuat-Cong, Thien-Phu Le und Pascal Ray. „Seismic fragility curves based on the probability density evolution method“. Vietnam Journal of Mechanics 39, Nr. 2 (21.06.2017): 177–89. http://dx.doi.org/10.15625/0866-7136/10208.
Der volle Inhalt der QuelleDissertationen zum Thema "FRAGILT CURVE"
Praticò, Lucia. „Analisi di vulnerabilità sismica di strutture prefabbricate mediante curve di fragilità“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Den vollen Inhalt der Quelle findenTahir, Haseeb. „Development of Fragility Curve Database for Multi-Hazard Performance Based Design“. Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71794.
Der volle Inhalt der QuelleMaster of Science
Patrignani, Elia. „Analisi sismica e determinazione di curve di fragilità per strutture in muratura“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Den vollen Inhalt der Quelle findenGil, Edward Matthew. „Computational Modeling of Glass Curtain Wall Systems to Support Fragility Curve Development“. Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/94051.
Der volle Inhalt der QuelleMaster of Science
Performance-based engineering (PBE) can allow engineers and building owners to design a building envelope for specific performance objectives and strength/serviceability levels, in addition to the minimum design loads expected. These envelope systems benefit from PBE as it improves their resiliency and performance during natural multi-hazard events (i.e. earthquakes and hurricanes). A useful PBE tool engineers may utilize to estimate the damages an envelope system may sustain during an event is the fragility curve. Fragility curves allow engineers to estimate the probability of reaching a damage state (i.e. glass cracking, or glass fallout) given a specified magnitude of an engineering demand parameter (i.e. an interstory drift ratio during an earthquake). These fragility curves are typically derived from the results of extensive experimental testing of the envelope system. However, computational simulations can also be utilized as they are a viable option in current fragility curve development frameworks. As it’s popularity amongst owners and architects was evident, the architectural glass curtain wall (CW) was the specific building envelope system studied herein. Glass CWs would benefit from implementing PBE as they are very susceptible to damages during earthquakes and hurricanes. Therefore, the goal of this computational research study was to develop fragility curves based on the analytical results obtained from the computational simulation of glass CW systems, which could aid in multi-hazard PBE design of CWs. As v opposed to utilizing limited, small experimental data sets, these simulations can help to improve the accuracy and decrease the uncertainties in the data required for fragility curve development. To complete the numerical simulations, 3D finite element (FE) models of a glass CW system were generated and validated against experimental tests. 11 multi-panel CW system configurations were then modeled to analyze their effect on the glass CW’s performance during in-plane and out-of-plane loading simulations. These parametric configurations included changes to the: equivalent clamping load, glass thickness, and glass-to-frame clearance. Fragility curves were then generated and compared to the single panel CW fragility curves derived experimentally within the FEMA P-58 Seismic Fragility Curve Development study. The fragility curves within FEMA P-58 were determined to be more conservative since they are based on single panel CWs. These fragility curves do not consider: the effects of multiple glass panels with varying aspect ratios; the possible component interactions/responses that may affect the extent of damages; and the continuity of the CW framing members across multiple panels. Finally, a fragility dispersion study was completed to observe the effects of implementing different levels of uncertainty and dispersion in the fragility curves based on analytical results.
Franceschini, Iolanda. „Analisi di fragilità di strutture ricettive della zona costiera dell'Emilia-Romagna“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Den vollen Inhalt der Quelle findenNielson, Bryant G. „Analytical Fragility Curves for Highway Bridges in Moderate Seismic Zones“. Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7542.
Der volle Inhalt der QuelleSaler, Elisa. „Seismic vulnerability and fragility of school buildings in Italy. A multiscale approach to assessment, prioritisation, and risk evaluation“. Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/348119.
Der volle Inhalt der QuelleAy, Bekir Ozer. „Fragility Based Assessment Of Low“. Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607629/index.pdf.
Der volle Inhalt der Quellespecific characteristics is investigated to manage the earthquake risk and to develop strategies for disaster mitigation. Low&ndash
rise and mid&ndash
rise reinforced concrete structures, which constitute approximately 75% of the total building stock in Turkey, are focused in this fragility&ndash
based assessment. The seismic design of 3, 5, 7 and 9&ndash
story reinforced concrete frame structures are carried out according to the current earthquake codes and two dimensional analytical models are formed accordingly. The uncertainty in material variability is taken into account in the formation of structural simulations. Frame structures are categorized as poor, typical or superior according to the specific characteristics of construction practice and the observed seismic performance after major earthquakes in Turkey. The demand statistics in terms of maximum interstory drift ratio are obtained for different sets of ground motion records. The capacity is determined in terms of limit states and the corresponding fragility curves are obtained from the probability of exceeding each limit state for different levels of ground shaking. The results are promising in the sense that the inherent structural deficiencies are reflected in the final fragility functions. Consequently, this study provides a reliable fragility&ndash
based database for earthquake damage and loss estimation of reinforced concrete building stock in urban areas of Turkey.
Giraudeau, Fabien. „Construction de courbes de fragilité sismique par la représentation de Karhunen-Loève“. Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22540/document.
Der volle Inhalt der QuelleThe failure probability of a structure under earthquake is represented with « fragility curves ». To estimate them, we propose to enrich a pre-existing data basis using the model of the article Stochastic model construction of natural hazards given experimental data, written by F. Poirion et I. Zentner, which is based on the Karhunen-Loeve expansion. The generated signals are sorted by seismic indicator classes using a data partitioning algorithm. Despite the resemblance between some simulated signals, and the consequences we draw from this problem, the structure is submitted to them. The resulting response signals are also enriched, taking into account uncertainties to construct an interval around the curve. The method works for any seismic indicator, and overcomes several common simplifying assumptions. The characteristics of the seismic scenario are preserved during the enrichment, and the process modeling the ground motion retains its generality. Our approach is first validated on a simple case, then on an industrial case
伊藤, 義人, Yoshito ITOH, 光永 和田 und Mitsunaga WADA. „イベントを考慮した交通基盤施設のライフサイクル評価手法に関する研究“. 土木学会, 2003. http://hdl.handle.net/2237/8633.
Der volle Inhalt der QuelleBücher zum Thema "FRAGILT CURVE"
Zhu, Feng. The fragility of the Phillips curve: A bumpy ride in the frequency domain. Basel, Switzerland: Bank for International Settlements, 2005.
Den vollen Inhalt der Quelle findenDerivation of empirical fragility curves from Italian damage data. ROSE School, 2008.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "FRAGILT CURVE"
Mohamed Nazri, Fadzli. „Fragility Curves“. In Seismic Fragility Assessment for Buildings due to Earthquake Excitation, 3–30. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7125-6_2.
Der volle Inhalt der QuelleRossetto, Tiziana, Dina D’Ayala, Ioanna Ioannou und Abdelghani Meslem. „Evaluation of Existing Fragility Curves“. In SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk, 47–93. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7872-6_3.
Der volle Inhalt der QuelleNakano, Kazuyoshi, Yoshio Kajitani und Hirokazu Tatano. „Functional Fragility Curves for Production Capacity“. In Integrated Disaster Risk Management, 11–25. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2719-4_2.
Der volle Inhalt der QuelleSalem, Yasser S., P. E. Tiffany Yoo, Ghad M. Gad und Jin Sung Cho. „Analytical Fragility Curves for Pipe Rack Structure“. In Advances and Challenges in Structural Engineering, 292–306. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01932-7_23.
Der volle Inhalt der QuellePrasad, P., und C. Gopinath. „Fragility Curves for Structures Using Energy Criterion“. In Lecture Notes in Civil Engineering, 703–19. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1608-5_51.
Der volle Inhalt der QuelleCimellaro, Gian Paolo. „Fragility Curves of Restoration Processes for Resilience Analysis“. In Springer Series in Reliability Engineering, 495–507. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52425-2_21.
Der volle Inhalt der QuelleSalem, Yasser S., P. E. Aren Azizian und Jin Sung Cho. „Analytical Fragility Curves of Open Frame Platform Structures“. In Advances and Challenges in Structural Engineering, 277–91. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01932-7_22.
Der volle Inhalt der QuelleCardellino, Enrico, Donatella de Silva und Emidio Nigro. „Estimation of Structural Fire Vulnerability Through Fragility Curves“. In Lecture Notes in Civil Engineering, 586–93. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91877-4_67.
Der volle Inhalt der QuelleRemki, Mustapha, und Fouad Kehila. „Analytically Derived Fragility Curves and Damage Assessment of Masonrybuildings“. In Facing the Challenges in Structural Engineering, 42–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61914-9_4.
Der volle Inhalt der QuelleYang, H. Z., und C. G. Koh. „Seismic Risk Evaluation by Fragility Curves Using Metamodel Methods“. In Lecture Notes in Mechanical Engineering, 313–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9199-0_29.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "FRAGILT CURVE"
Serdar, Nina N., Jelena R. Pejovic, Radenko Pejovic und Miloš Knežević. „Seismic risk assessment of RC curved bridges through fragility curves“. In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.1488.
Der volle Inhalt der QuelleDu, Xinlong, Jerome F. Hajjar, Robert Bailey Bond und Hao Sun. „Collapse Fragility Development of Electrical Transmission Towers Subjected to Hurricanes“. In IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.0235.
Der volle Inhalt der QuelleSinha, R. „High dimensional model representation for the probabilistic assessment of seismic pounding“. In Advanced Topics in Mechanics of Materials, Structures and Construction. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902592-5.
Der volle Inhalt der QuelleGmelin, Sebastian, Kristian Agger und Michael Lassen. „Simulation Design Tools: Using Parametric Building Information Modeling and Physical Simulation for Form Finding of Double Curved Surfaces“. In eCAADe 2011 : Respecting Fragile Places. eCAADe, 2011. http://dx.doi.org/10.52842/conf.ecaade.2011.215.
Der volle Inhalt der QuelleShimazu, Ryuya, Michiya Sakai, Yohei Ono und Shinichi Matsuura. „Strength Distribution Characteristics of Elbow Pipes Considering Low Cycle Fatigue Based on Analysis“. In ASME 2021 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/pvp2021-61943.
Der volle Inhalt der QuelleJu, Heekun, und Hyung-Jo Jung. „Estimation of Equipment Fragility Curve of Nonlinear Nuclear Power Plant Structures“. In IABSE Conference, Seoul 2020: Risk Intelligence of Infrastructures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2020. http://dx.doi.org/10.2749/seoul.2020.143.
Der volle Inhalt der QuelleBursi, Oreste S., Giuseppe Abbiati, Luca Caracoglia und Md Shahin Reza. „Effects of Uncertainties in Boundary Conditions on Dynamic Characteristics of Industrial Plant Components“. In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28177.
Der volle Inhalt der QuelleKumar, Rajesh, Dipti Ranjan Sahoo und Ashok Gupta. „Fragility curves for special truss moment frame with single and multiple vierendeel special segment“. In 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.7248.
Der volle Inhalt der QuelleColonna, Silvia, Stefania Imperatore und Barbara Ferracuti. „FRAGILITY CURVES OF MASONRY CHURCHES FAÇADES“. In 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2019. http://dx.doi.org/10.7712/120119.6951.19424.
Der volle Inhalt der QuelleQiu, L. Y., N. Z. Nik Azizan und R. M. K. Tahara. „Development of fragility curves for bridge“. In ADVANCES IN MATERIAL SCIENCE AND MANUFACTURING ENGINEERING. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0116439.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "FRAGILT CURVE"
Schultz, Martin T., Ben P. Gouldby, Jonathan D. Simm und Johannes L. Wibowo. Beyond the Factor of Safety: Developing Fragility Curves to Characterize System Reliability. Fort Belvoir, VA: Defense Technical Information Center, Juli 2010. http://dx.doi.org/10.21236/ada525580.
Der volle Inhalt der QuelleColeman, Justin. Demonstration of NonLinear Seismic Soil Structure Interaction and Applicability to New System Fragility Seismic Curves. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1168656.
Der volle Inhalt der QuelleDu, Xinlong, und Jerome F. Hajjar. Structural Performance Assessment of Electrical Transmission Networks for Hurricane Resilience Enhancement. Northeastern University, August 2022. http://dx.doi.org/10.17760/d20460693.
Der volle Inhalt der QuelleHobbs, T. E., J. M. Journeay, A. S. Rao, L. Martins, P. LeSueur, M. Kolaj, M. Simionato et al. Scientific basis of Canada's first public national seismic risk model. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330927.
Der volle Inhalt der Quelle