Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: FREE-FREE BOUNDARY.

Zeitschriftenartikel zum Thema „FREE-FREE BOUNDARY“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "FREE-FREE BOUNDARY" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Chistyakov, A. E., E. A. Protsenko und E. F. Timofeeva. „Mathematical modeling of oscillatory processes with a free boundary“. COMPUTATIONAL MATHEMATICS AND INFORMATION TECHNOLOGIES 1, Nr. 1 (2017): 102–12. http://dx.doi.org/10.23947/2587-8999-2017-1-1-102-112.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gurevich, Alex. „Boundary regularity for free boundary problems“. Communications on Pure and Applied Mathematics 52, Nr. 3 (März 1999): 363–403. http://dx.doi.org/10.1002/(sici)1097-0312(199903)52:3<363::aid-cpa3>3.0.co;2-u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jiang, Yingchun, und Qingqing Sun. „Three-Dimensional Biorthogonal Divergence-Free and Curl-Free Wavelets with Free-Slip Boundary“. Journal of Applied Mathematics 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/954717.

Der volle Inhalt der Quelle
Annotation:
This paper deals with the construction of divergence-free and curl-free wavelets on the unit cube, which satisfies the free-slip boundary conditions. First, interval wavelets adapted to our construction are introduced. Then, we provide the biorthogonal divergence-free and curl-free wavelets with free-slip boundary and simple structure, based on the characterization of corresponding spaces. Moreover, the bases are also stable.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

SUSSMAN, MARK, und PETER SMEREKA. „Axisymmetric free boundary problems“. Journal of Fluid Mechanics 341 (25.06.1997): 269–94. http://dx.doi.org/10.1017/s0022112097005570.

Der volle Inhalt der Quelle
Annotation:
We present a number of three-dimensional axisymmetric free boundary problems for two immiscible fluids, such as air and water. A level set method is used where the interface is the zero level set of a continuous function while the two fluids are solutions of the incompressible Navier–Stokes equation. We examine the rise and distortion of an initially spherical bubble into cap bubbles and toroidal bubbles. Steady solutions for gas bubbles rising in a liquid are computed, with favourable comparisons to experimental data. We also study the inviscid limit and compare our results with a boundary integral method. The problems of an air bubble bursting at a free surface and a liquid drop hitting a free surface are also computed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dovì, V. G., H. Preisig und O. Paladino. „Inverse free boundary problems“. Applied Mathematics Letters 2, Nr. 1 (1989): 91–96. http://dx.doi.org/10.1016/0893-9659(89)90125-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lortz, D. „Plane free-boundary equilibria“. Plasma Physics and Controlled Fusion 33, Nr. 1 (01.01.1991): 77–89. http://dx.doi.org/10.1088/0741-3335/33/1/005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Shargorodsky, E., und J. F. Toland. „Bernoulli free-boundary problems“. Memoirs of the American Mathematical Society 196, Nr. 914 (2008): 0. http://dx.doi.org/10.1090/memo/0914.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Park, Sung-Ho, und Juncheol Pyo. „Free boundary minimal hypersurfaces with spherical boundary“. Mathematische Nachrichten 290, Nr. 5-6 (31.05.2016): 885–89. http://dx.doi.org/10.1002/mana.201500399.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Edelen, Nick. „The free-boundary Brakke flow“. Journal für die reine und angewandte Mathematik (Crelles Journal) 2020, Nr. 758 (01.01.2020): 95–137. http://dx.doi.org/10.1515/crelle-2017-0053.

Der volle Inhalt der Quelle
Annotation:
AbstractWe develop the notion of Brakke flow with free-boundary in a barrier surface. Unlike the classical free-boundary mean curvature flow, the free-boundary Brakke flow must “pop” upon tangential contact with the barrier. We prove a compactness theorem for free-boundary Brakke flows, define a Gaussian monotonicity formula valid at all points, and use this to adapt the local regularity theorem of White [23] to the free-boundary setting. Using Ilmanen’s elliptic regularization procedure [10], we prove existence of free-boundary Brakke flows.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

MATSUSHITA, Osami. „Modelling; Free from boundary condition.“ Journal of the Japan Society for Precision Engineering 54, Nr. 5 (1988): 848–52. http://dx.doi.org/10.2493/jjspe.54.848.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Mendes, Abraão. „Rigidity of free boundary MOTS“. Nonlinear Analysis 220 (Juli 2022): 112841. http://dx.doi.org/10.1016/j.na.2022.112841.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Agelmenev, M. E. „The Modeling with Free Boundary“. Molecular Crystals and Liquid Crystals 545, Nr. 1 (30.06.2011): 190/[1414]—203/[1427]. http://dx.doi.org/10.1080/15421406.2011.572010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Hilhorst, Danielle, und Josephus Hulshof. „A free boundary focusing problem“. Proceedings of the American Mathematical Society 121, Nr. 4 (01.04.1994): 1193. http://dx.doi.org/10.1090/s0002-9939-1994-1233975-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Dipierro, Serena, Ovidiu Savin und Enrico Valdinoci. „A Nonlocal Free Boundary Problem“. SIAM Journal on Mathematical Analysis 47, Nr. 6 (Januar 2015): 4559–605. http://dx.doi.org/10.1137/140999712.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Friedman, Avner. „Free boundary problems in biology“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, Nr. 2050 (13.09.2015): 20140368. http://dx.doi.org/10.1098/rsta.2014.0368.

Der volle Inhalt der Quelle
Annotation:
In this paper, I review several free boundary problems that arise in the mathematical modelling of biological processes. The biological topics are quite diverse: cancer, wound healing, biofilms, granulomas and atherosclerosis. For each of these topics, I describe the biological background and the mathematical model, and then proceed to state mathematical results, including existence and uniqueness theorems, stability and asymptotic limits, and the behaviour of the free boundary. I also suggest, for each of the topics, open mathematical problems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Zheng, L. J. „Free boundary ballooning mode representation“. Physics of Plasmas 19, Nr. 10 (Oktober 2012): 102506. http://dx.doi.org/10.1063/1.4759012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Nührenberg, C. „Free-boundary perturbed MHD equilibria“. Journal of Physics: Conference Series 401 (03.12.2012): 012018. http://dx.doi.org/10.1088/1742-6596/401/1/012018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Soltanov, K. N., und E. B. Novruzov. „On a free boundary problem“. Izvestiya: Mathematics 66, Nr. 4 (31.08.2002): 807–27. http://dx.doi.org/10.1070/im2002v066n04abeh000398.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Bensid, Sabri, und S. M. Bouguima. „On a free boundary problem“. Nonlinear Analysis: Theory, Methods & Applications 68, Nr. 8 (April 2008): 2328–48. http://dx.doi.org/10.1016/j.na.2007.01.047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Frolova, E. V. „Free Boundary Problem of Magnetohydrodynamics“. Journal of Mathematical Sciences 210, Nr. 6 (01.10.2015): 857–77. http://dx.doi.org/10.1007/s10958-015-2596-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Chen, Eugene Y., H. L. Berk, B. Breizman und L. J. Zheng. „Free-boundary toroidal Alfvén eigenmodes“. Physics of Plasmas 18, Nr. 5 (Mai 2011): 052503. http://dx.doi.org/10.1063/1.3575157.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Cryer, Colin C., und John Crank. „Free and Moving Boundary Problems.“ Mathematics of Computation 46, Nr. 174 (April 1986): 765. http://dx.doi.org/10.2307/2008018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

CRASTER, R. V. „Two related free boundary problems“. IMA Journal of Applied Mathematics 52, Nr. 3 (1994): 253–70. http://dx.doi.org/10.1093/imamat/52.3.253.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Remizova, E. V. „A problem with free boundary“. Journal of Soviet Mathematics 45, Nr. 3 (Mai 1989): 1163–72. http://dx.doi.org/10.1007/bf01096148.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Boucherif, Abdelkader, und Sidi Mohammed Bouguima. „On a Free Boundary Problem“. Mathematical Methods in the Applied Sciences 19, Nr. 15 (Oktober 1996): 1257–64. http://dx.doi.org/10.1002/(sici)1099-1476(199610)19:15<1257::aid-mma834>3.0.co;2-t.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Clarelli, Fabrizio, Antonio Fasano und Roberto Natalini. „Free-boundary models of sulphation“. PAMM 7, Nr. 1 (Dezember 2007): 1110201–2. http://dx.doi.org/10.1002/pamm.200700288.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Kuznetsov, V. V., und O. A. Frolovskaya. „Boundary layers in free convection“. Journal of Applied Mechanics and Technical Physics 41, Nr. 3 (Mai 2000): 461–69. http://dx.doi.org/10.1007/bf02465297.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Mikayelyan, Hayk, und Henrik Shahgholian. „Convexity of the free boundary for an exterior free boundary problem involving the perimeter“. Communications on Pure & Applied Analysis 12, Nr. 3 (2013): 1431–43. http://dx.doi.org/10.3934/cpaa.2013.12.1431.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Centen, P., M. P. H. Weenink und W. Schuurman. „Minimum-energy principle for a free-boundary, force-free plasma“. Plasma Physics and Controlled Fusion 28, Nr. 1B (01.01.1986): 347–55. http://dx.doi.org/10.1088/0741-3335/28/1b/009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Gupta, A. K., und D. Surya. „Benard-Marangoni Convection with Free Slip Bottom and Mixed Thermal Boundary Conditions“. Mathematical Journal of Interdisciplinary Sciences 2, Nr. 2 (03.03.2014): 141–54. http://dx.doi.org/10.15415/mjis.2014.22011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Okuma, Masaaki, und Qinzhong Shi. „Identification of Principal Rigid Body Modes Under Free-Free Boundary Condition“. Journal of Vibration and Acoustics 119, Nr. 3 (01.07.1997): 341–45. http://dx.doi.org/10.1115/1.2889729.

Der volle Inhalt der Quelle
Annotation:
This paper focuses on the problem of identifying all individual principal rigid body modes and the associated mass or principal inertia of moment, which can be called modal mass, of flexible structures under the free-free boundary condition with fewer multi-location excitations than the number of those modes. The rigid body mass matrix of the structure can be identified by using both the parameters of inertia, which are determined previously by a modal parameter estimation, and the coordinates of measurement points. As all rigid body properties can be obtained from the mass matrix, it becomes possible to simulate the FRFs between any two measurement points with inclusion of the contribution of rigid body motions even by only experimental modal analysis technique. First, the theory is explained. Then, a numerical simulation and two actual identifications for a plate structure and an automotive body component are carried out to demonstrate the validity and the usefulness of the theory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Yi,, Tong Y., und Parviz E. Nikravesh. „Extraction of Free-Free Modes from Constrained Vibration Data for Flexible Multibody Models“. Journal of Vibration and Acoustics 123, Nr. 3 (01.02.2001): 383–89. http://dx.doi.org/10.1115/1.1375814.

Der volle Inhalt der Quelle
Annotation:
This paper presents a method for identifying the free-free modes of a structure by utilizing the vibration data of the same structure with boundary conditions. In modal formulations for flexible body dynamics, modal data are primary known quantities that are obtained either experimentally or analytically. The vibration measurements may be obtained for a flexible body that is constrained differently than its boundary conditions in a multibody system. For a flexible body model in a multibody system, depending upon the formulation used, we may need a set of free-free modal data or a set of constrained modal data. If a finite element model of the flexible body is available, its vibration data can be obtained analytically under any desired boundary conditions. However, if a finite element model is not available, the vibration data may be determined experimentally. Since experimentally measured vibration data are obtained for a flexible body supported by some form of boundary conditions, we may need to determine its free-free vibration data. The aim of this study is to extract, based on experimentally obtained vibration data, the necessary free-free frequencies and the associated modes for flexible bodies to be used in multibody formulations. The available vibration data may be obtained for a structure supported either by springs or by fixed boundary conditions. Furthermore, the available modes may be either a complete set, having as many modes as the number of degrees of freedom of the associated FE model, or an incomplete set.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Samira, Khatmi, und Barkatou Mohammed. „On some overdetermined free boundary problems“. ANZIAM Journal 49 (22.11.2007): 11. http://dx.doi.org/10.21914/anziamj.v49i0.168.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Hussein, M. S., D. Lesnic und M. Ivanchov. „Free Boundary Determination in Nonlinear Diffusion“. East Asian Journal on Applied Mathematics 3, Nr. 4 (November 2013): 295–310. http://dx.doi.org/10.4208/eajam.100913.061113a.

Der volle Inhalt der Quelle
Annotation:
AbstractFree boundary problems with nonlinear diffusion occur in various applications, such as solidification over a mould with dissimilar nonlinear thermal properties and saturated or unsaturated absorption in the soil beneath a pond. In this article, we consider a novel inverse problem where a free boundary is determined from the mass/energy specification in a well-posed one-dimensional nonlinear diffusion problem, and a stability estimate is established. The problem is recast as a nonlinear least-squares minimisation problem, which is solved numerically using the lsqnonlin routine from the MATLAB toolbox. Accurate and stable numerical solutions are achieved. For noisy data, instability is manifest in the derivative of the moving free surface, but not in the free surface itself nor in the concentration or temperature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Friedman, Avner. „Free boundary problems arising in biology“. Discrete & Continuous Dynamical Systems - B 23, Nr. 1 (2018): 193–202. http://dx.doi.org/10.3934/dcdsb.2018013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

S., L. R., und P. Neittaanmaki. „Numerical Methods for Free Boundary Problems.“ Mathematics of Computation 63, Nr. 207 (Juli 1994): 426. http://dx.doi.org/10.2307/2153589.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

KIM, INWON C. „A Free Boundary Problem with Curvature“. Communications in Partial Differential Equations 30, Nr. 1-2 (April 2005): 121–38. http://dx.doi.org/10.1081/pde-200044474.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Huysmans, G. T. A., J. P. Goedbloed und W. Kerner. „Free boundary resistive modes in tokamaks“. Physics of Fluids B: Plasma Physics 5, Nr. 5 (Mai 1993): 1545–58. http://dx.doi.org/10.1063/1.860894.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Lewis, John L., und Andrew L. Vogel. „Uniqueness in a Free Boundary Problem“. Communications in Partial Differential Equations 31, Nr. 11 (November 2006): 1591–614. http://dx.doi.org/10.1080/03605300500455909.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Lamboley, Jimmy, Yannick Sire und Eduardo V. Teixeira. „Free boundary problems involving singular weights“. Communications in Partial Differential Equations 45, Nr. 7 (25.01.2020): 758–75. http://dx.doi.org/10.1080/03605302.2020.1716003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Reusch, Michael F. „Free boundary skin current magnetohydrodynamic equilibria“. Physics of Fluids 31, Nr. 10 (1988): 2962. http://dx.doi.org/10.1063/1.866953.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

De Silva, Daniela, und David Jerison. „A singular energy minimizing free boundary“. Journal für die reine und angewandte Mathematik (Crelles Journal) 2009, Nr. 635 (Januar 2009): 1–21. http://dx.doi.org/10.1515/crelle.2009.074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Hongler, Clément, und Kalle Kytölä. „Ising interfaces and free boundary conditions“. Journal of the American Mathematical Society 26, Nr. 4 (25.06.2013): 1107–89. http://dx.doi.org/10.1090/s0894-0347-2013-00774-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Emamizadeh, B., und M. Marras. „Rearrangement Optimization Problems with Free Boundary“. Numerical Functional Analysis and Optimization 35, Nr. 4 (07.03.2014): 404–22. http://dx.doi.org/10.1080/01630563.2014.884587.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

CHIPPADA, S., T. C. JUE, S. W. JOO, M. F. WHEELER und B. RAMASWAMY. „Numerical Simulation of Free-Boundary Problems“. International Journal of Computational Fluid Dynamics 7, Nr. 1-2 (Juli 1996): 91–118. http://dx.doi.org/10.1080/10618569608940754.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Clain, S. „Chemical Attack in Free Boundary Domains“. Journal of Applied Analysis 5, Nr. 1 (Januar 1999): 35–58. http://dx.doi.org/10.1515/jaa.1999.35.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Hou, Thomas Y. „Numerical Solutions to Free Boundary Problems“. Acta Numerica 4 (Januar 1995): 335–415. http://dx.doi.org/10.1017/s0962492900002567.

Der volle Inhalt der Quelle
Annotation:
Many physically interesting problems involve propagation of free surfaces. Vortex-sheet roll-up in hydrodynamic instability, wave interactions on the ocean's free surface, the solidification problem for crystal growth and Hele-Shaw cells for pattern formation are some of the significant examples. These problems present a great challenge to physicists and applied mathematicians because the underlying problem is very singular. The physical solution is sensitive to small perturbations. Naïve discretisations may lead to numerical instabilities. Other numerical difficulties include singularity formation and possible change of topology in the moving free surfaces, and the severe time-stepping stability constraint due to the stiffness of high-order regularisation effects, such as surface tension.This paper reviews some of the recent advances in developing stable and efficient numerical algorithms for solving free boundary-value problems arising from fluid dynamics and materials science. In particular, we will consider boundary integral methods and the level-set approach for water waves, general multi-fluid interfaces, Hele–Shaw cells, crystal growth and solidification. We will also consider the stabilising effect of surface tension and curvature regularisation. The issue of numerical stability and convergence will be discussed, and the related theoretical results for the continuum equations will be addressed. This paper is not intended to be a detailed survey and the discussion is limited by both the taste and expertise of the author.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Fotouhi, Morteza, und Henrik Shahgholian. „A semilinear PDE with free boundary“. Nonlinear Analysis: Theory, Methods & Applications 151 (März 2017): 145–63. http://dx.doi.org/10.1016/j.na.2016.11.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

BERON-VERA, F. J., und P. RIPA. „Free boundary effects on baroclinic instability“. Journal of Fluid Mechanics 352 (10.12.1997): 245–64. http://dx.doi.org/10.1017/s0022112097007222.

Der volle Inhalt der Quelle
Annotation:
The effects of a free boundary on the stability of a baroclinic parallel flow are investigated using a reduced-gravity model. The basic state has uniform density stratification and a parallel flow with uniform vertical shear in thermal-wind balance with the horizontal buoyancy gradient. A finite value of the velocity at the free (lower) boundary requires the interface to have a uniform slope in the direction transversal to that of the flow. Normal-mode perturbations with arbitrary vertical structure are studied in the limit of small Rossby number. This solution is restricted to neither a horizontal lower boundary nor a weak stratification in the basic state.In the limit of a very weak stratification and bottom slope there is a large separation between the first two deformation radii and hence short or long perturbations may be identified:(a) The short-perturbation limit corresponds to the well-known Eady problem in which case the layer bottom is effectively rigid and its slope in the basic state is immaterial.(b) In the long-perturbation limit the bottom is free to deform and the unstable wave solutions, which appear for any value of the Richardson number Ri, are sensible to its slope in the basic state. In fact, a sloped bottom is found to stabilize the basic flow.At stronger stratifications there is no distinction between short and long perturbations, and the bottom always behaves as a free boundary. Unstable wave solutions are found for Ri→∞ (unlike the case of long perturbations). The increase in stratification is found to stabilize the basic flow. At the maximum stratification compatible with static stability, the perturbation has a vanishing growth rate at all wavenumbers.Results in the long-perturbation limit corroborate those predicted by an approximate layer model that restricts the buoyancy perturbations to have a linear vertical structure. The approximate model is less successful in the short-perturbation limit since the constraint to a linear density profile does not allow the correct representation of the exponential trapping of the exact eigensolutions. With strong stratification, only the growth rate of long enough perturbations superimposed on basic states with gently sloped lower boundaries behaves similarly to that of the exact model. However, the stabilizing tendency on the basic flow as the stratification reaches its maximum is also found in the approximate model. Its partial success in this case is also attributed to the limited vertical structure allowed by the model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Lions, P. L., und N. Masmoudi. „On a free boundary barotropic model“. Annales de l'Institut Henri Poincare (C) Non Linear Analysis 16, Nr. 3 (Mai 1999): 373–410. http://dx.doi.org/10.1016/s0294-1449(99)80018-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie