Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Fuzzy logic.

Zeitschriftenartikel zum Thema „Fuzzy logic“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Fuzzy logic" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

BOBILLO, FERNANDO, MIGUEL DELGADO, JUAN GÓMEZ-ROMERO und UMBERTO STRACCIA. „JOINING GÖDEL AND ZADEH FUZZY LOGICS IN FUZZY DESCRIPTION LOGICS“. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 20, Nr. 04 (August 2012): 475–508. http://dx.doi.org/10.1142/s0218488512500249.

Der volle Inhalt der Quelle
Annotation:
Ontologies have succeeded as a knowledge representation formalism in many domains of application. Nevertheless, they are not suitable to represent vague or imprecise information. To overcome this limitation, several extensions to classical ontologies based on fuzzy logic have been proposed. Even though different fuzzy logics lead to fuzzy ontologies with very different logical properties, the combined use of different fuzzy logics has received little attention to date. This paper proposes a fuzzy extension of the Description Logic [Formula: see text] — the logic behind the ontology language OWL 2 — that joins Gödel and Zadeh fuzzy logics. We analyze the properties of the new fuzzy Description Logic in order to provide guidelines to ontology developers to exploit the best features of each fuzzy logic. The proposal also considers degrees of truth belonging to a finite set of linguistic terms rather than numerical values, thus being closer to real experts' reasonings. We prove the decidability of the combined logic by presenting a reasoning preserving procedure to obtain a crisp representation for it. This result is generalized to offer a similar reduction that can be applied when any other finite t -norms, t -conorms, negations or implications are considered in the logic.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Metcalfe, George, und Franco Montagna. „Substructural fuzzy logics“. Journal of Symbolic Logic 72, Nr. 3 (September 2007): 834–64. http://dx.doi.org/10.2178/jsl/1191333844.

Der volle Inhalt der Quelle
Annotation:
AbstractSubstructural fuzzy logics are substructural logics that are complete with respect to algebras whose lattice reduct is the real unit interval [0, 1]. In this paper, we introduce Uninorm logic UL as Multiplicative additive intuitionistic linear logic MAILL extended with the prelinearity axiom ((A → B) ∧ t) V ((B → A)∧ t). Axiomatic extensions of UL include known fuzzy logics such as Monoidal t-norm logic MIX and Gödel logic G, and new weakening-free logics. Algebraic semantics for these logics are provided by subvarieties of (representable) pointed bounded commutative residuated lattices. Gentzen systems admitting cut-elimination are given in the framework of hypersequents. Completeness with respect to algebras with lattice reduct [0, 1] is established for UL and several extensions using a two-part strategy. First, completeness is proved for the logic extended with Takeuti and Titani's density rule. A syntactic elimination of the rule is then given using a hypersequent calculus. As an algebraic corollary, it follows that certain varieties of residuated lattices are generated by their members with lattice reduct [0, 1].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gehrke, Mai, Carol Walker und Elbert Walker. „A Mathematical Setting for Fuzzy Logics“. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 05, Nr. 03 (Juni 1997): 223–38. http://dx.doi.org/10.1142/s021848859700021x.

Der volle Inhalt der Quelle
Annotation:
The setup of a mathematical propositional logic is given in algebraic terms, describing exactly when two choices of truth value algebras give the same logic. The propositional logic obtained when the algebra of truth values is the real numbers in the unit interval equipped with minimum, maximum and -x=1-x for conjunction, disjunction and negation, respectively, is the standard propositional fuzzy logic. This is shown to be the same as three-valued logic. The propositional logic obtained when the algebra of truth values is the set {(a, b)|a≤ b and a,b∈[0,1]} of subintervals of the unit interval with component-wise operations, is propositional interval-valued fuzzy logic. This is shown to be the same as the logic given by a certain four element lattice of truth values. Since both of these logics are equivalent to ones given by finite algebras, it follows that there are finite algorithms for determining when two statements are logically equivalent within either of these logics. On this topic, normal forms are discussed for both of these logics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

MIYAKOSHI, Masaaki. „Fuzzy Logic“. Journal of Japan Society for Fuzzy Theory and Systems 4, Nr. 1 (1992): 90–97. http://dx.doi.org/10.3156/jfuzzy.4.1_90.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chast, Roz. „Fuzzy Logic“. Scientific American 289, Nr. 2 (August 2003): 96. http://dx.doi.org/10.1038/scientificamerican0803-96.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chast, Roz. „Fuzzy Logic“. Scientific American 288, Nr. 6 (Juni 2003): 92. http://dx.doi.org/10.1038/scientificamerican0603-92.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Klir, G. J. „Fuzzy logic“. IEEE Potentials 14, Nr. 4 (1995): 10–15. http://dx.doi.org/10.1109/45.468220.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chast, Roz. „Fuzzy Logic“. Scientific American 288, Nr. 3 (März 2003): 112. http://dx.doi.org/10.1038/scientificamerican0303-112.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chast, Roz. „Fuzzy Logic“. Scientific American 287, Nr. 6 (Dezember 2002): 139. http://dx.doi.org/10.1038/scientificamerican1202-139.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Chast, Roz. „Fuzzy Logic“. Scientific American 289, Nr. 6 (Dezember 2003): 128. http://dx.doi.org/10.1038/scientificamerican1203-128.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Chast, Roz. „Fuzzy Logic“. Scientific American 286, Nr. 5 (Mai 2002): 104. http://dx.doi.org/10.1038/scientificamerican0502-104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Kosko, Bart, und Satoru Isaka. „Fuzzy Logic“. Scientific American 269, Nr. 1 (Juli 1993): 76–81. http://dx.doi.org/10.1038/scientificamerican0793-76.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Chast, Roz. „Fuzzy Logic“. Scientific American 287, Nr. 2 (August 2002): 96. http://dx.doi.org/10.1038/scientificamerican0802-96.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Chast, Roz. „Fuzzy Logic“. Scientific American 290, Nr. 2 (Februar 2004): 100. http://dx.doi.org/10.1038/scientificamerican0204-100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Chast, Roz. „Fuzzy Logic“. Scientific American 287, Nr. 3 (September 2002): 104. http://dx.doi.org/10.1038/scientificamerican0902-104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Chast, Roz. „Fuzzy Logic“. Scientific American 289, Nr. 3 (September 2003): 116. http://dx.doi.org/10.1038/scientificamerican0903-116.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Chast, Roz. „Fuzzy Logic“. Scientific American 287, Nr. 5 (November 2002): 100. http://dx.doi.org/10.1038/scientificamerican1102-100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Lootsma, Freerk A. „Fuzzy logic“. European Journal of Operational Research 102, Nr. 1 (Oktober 1997): 244. http://dx.doi.org/10.1016/s0377-2217(97)90065-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Sprawls, Clay. „Fuzzy logic“. Journal of Strategic Information Systems 3, Nr. 1 (März 1994): 77. http://dx.doi.org/10.1016/0963-8687(94)90007-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Novak, Kristine. „Fuzzy logic“. Nature Reviews Cancer 2, Nr. 10 (Oktober 2002): 724. http://dx.doi.org/10.1038/nrc919.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Zadeh, Lotfi. „Fuzzy logic“. Scholarpedia 3, Nr. 3 (2008): 1766. http://dx.doi.org/10.4249/scholarpedia.1766.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Chast, Roz. „Fuzzy Logic“. Scientific American 290, Nr. 1 (Januar 2004): 110. http://dx.doi.org/10.1038/scientificamerican0104-110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Zadeh, L. A. „Fuzzy logic“. Computer 21, Nr. 4 (April 1988): 83–93. http://dx.doi.org/10.1109/2.53.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Chast, Roz. „Fuzzy Logic“. Scientific American 288, Nr. 2 (Februar 2003): 94. http://dx.doi.org/10.1038/scientificamerican0203-94.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Chast, Roz. „Fuzzy Logic“. Scientific American 287, Nr. 4 (Oktober 2002): 108. http://dx.doi.org/10.1038/scientificamerican1002-108.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Chast, Roz. „Fuzzy Logic“. Scientific American 289, Nr. 4 (Oktober 2003): 104. http://dx.doi.org/10.1038/scientificamerican1003-104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Chast, Roz. „Fuzzy Logic“. Scientific American 286, Nr. 4 (April 2002): 100. http://dx.doi.org/10.1038/scientificamerican0402-100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Chast, Roz. „Fuzzy Logic“. Scientific American 288, Nr. 4 (April 2003): 104. http://dx.doi.org/10.1038/scientificamerican0403-104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

C, Swathi, Jenifer Ebienazer, Swathi M und Suruthipriya S. „Fuzzy Logic“. International Journal of Innovative Research in Information Security 09, Nr. 03 (23.06.2023): 147–52. http://dx.doi.org/10.26562/ijiris.2023.v0903.19.

Der volle Inhalt der Quelle
Annotation:
Fuzzy logic is a mathematical framework for reasoning about ambiguous or inaccurate information. It is founded on the idea that truth can be stated as a degree of membership in a fuzzy set rather than as a binary value of true or untrue. Fuzzy logic is used in control systems, artificial intelligence, and decision-making. This paper defines fuzzy logic and discusses its key concepts, mathematical underpinnings, and applications. We look at the benefits and drawbacks.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Meech, J. A. „Fuzzy Logic ' '93; 1st Annual Fuzzy Logic Symposium“. Minerals Engineering 7, Nr. 1 (Januar 1994): 118–20. http://dx.doi.org/10.1016/0892-6875(94)90154-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Aldana, Milagrosa, und María Antonia Lledó. „The Fuzzy Bit“. Symmetry 15, Nr. 12 (23.11.2023): 2103. http://dx.doi.org/10.3390/sym15122103.

Der volle Inhalt der Quelle
Annotation:
In this paper, the formulation of Quantum Mechanics in terms of fuzzy logic and fuzzy sets is explored. A result by Pykacz, which establishes a correspondence between (quantum) logics (lattices with certain properties) and certain families of fuzzy sets, is applied to the Birkhoff–von Neumann logic, the lattice of projectors of a Hilbert space. Three cases are considered: the qubit, two qubits entangled, and a qutrit ‘nested’ inside the two entangled qubits. The membership functions of the fuzzy sets are explicitly computed and all the connectives of the fuzzy sets are interpreted as operations with these particular membership functions. In this way, a complete picture of the standard quantum logic in terms of fuzzy sets is obtained for the systems considered.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

TRILLAS, E. „ON LOGIC AND FUZZY LOGIC“. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 01, Nr. 02 (Dezember 1993): 107–37. http://dx.doi.org/10.1142/s0218488593000073.

Der volle Inhalt der Quelle
Annotation:
This paper mainly consists of a review of some basic tools of Inexact Inference, its reduction to classical logic and its cautious use of Fuzzy Logic. Those tools are the concept of Conditional Relation, its greatest case of Material Conditional and the concept of Logical-States as possible worlds of "true" elements. Some recent results characterizing Monotonic Preorders are also introduced, in both the Classical and Fuzzy cases. Everything lies on the semantic level of Logic and is presented in a naive mathematical style.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Lee, C. C. „Fuzzy logic in control systems: fuzzy logic controller. I“. IEEE Transactions on Systems, Man, and Cybernetics 20, Nr. 2 (1990): 404–18. http://dx.doi.org/10.1109/21.52551.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Lee, C. C. „Fuzzy logic in control systems: fuzzy logic controller. II“. IEEE Transactions on Systems, Man, and Cybernetics 20, Nr. 2 (1990): 419–35. http://dx.doi.org/10.1109/21.52552.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Godo, L., J. Jacas und L. Valverde. „Fuzzy values in fuzzy logic“. International Journal of Intelligent Systems 6, Nr. 2 (März 1991): 199–212. http://dx.doi.org/10.1002/int.4550060207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

buche, antje, jonas buche und markus b. siewert. „fuzzy logic or fuzzy application? a response to Stockemer’s ‘fuzzy set or fuzzy logic?“ European Political Science 15, Nr. 3 (10.08.2016): 359–78. http://dx.doi.org/10.1057/eps.2015.97.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

PUNČOCHÁŘ, VÍT. „SUBSTRUCTURAL INQUISITIVE LOGICS“. Review of Symbolic Logic 12, Nr. 2 (01.02.2019): 296–330. http://dx.doi.org/10.1017/s1755020319000017.

Der volle Inhalt der Quelle
Annotation:
AbstractThis paper shows that any propositional logic that extends a basic substructural logic BSL (a weak, nondistributive, nonassociative, and noncommutative version of Full Lambek logic with a paraconsistent negation) can be enriched with questions in the style of inquisitive semantics and logic. We introduce a relational semantic framework for substructural logics that enables us to define the notion of an inquisitive extension of λ, denoted as ${\lambda ^?}$, for any logic λ that is at least as strong as BSL. A general theory of these “inquisitive extensions” is worked out. In particular, it is shown how to axiomatize ${\lambda ^?}$, given the axiomatization of λ. Furthermore, the general theory is applied to some prominent logical systems in the class: classical logic Cl, intuitionistic logic Int, and t-norm based fuzzy logics, including for example Łukasiewicz fuzzy logic Ł. For the inquisitive extensions of these logics, axiomatization is provided and a suitable semantics found.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Cong, Cuong Bui, Roan Thi Ngan und Le Ba Long. „Some New De Morgan Picture Operator Triples in Picture Fuzzy Logic“. Journal of Computer Science and Cybernetics 33, Nr. 2 (03.01.2018): 143–64. http://dx.doi.org/10.15625/1813-9663/33/2/10706.

Der volle Inhalt der Quelle
Annotation:
A new concept of picture fuzzy sets (PFS) were introduced in 2013, which are directextensions of the fuzzy sets and the intuitonistic fuzzy sets. Then some operations on PFS withsome properties are considered in [ 9,10 ]. Some basic operators of fuzzy logic as negation, tnorms, t-conorms for picture fuzzy sets firstly are defined and studied in [13,14]. This paper isdevoted to some classes of representable picture fuzzy t-norms and representable picture fuzzyt-conorms on PFS and a basic algebra structure of Picture Fuzzy Logic – De Morgan triples ofpicture operators.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Egesoy, Ahmet, und Aylin Güzel. „Fuzzy Logic Support for Requirements Engineering“. International Journal of Innovative Research in Computer Science & Technology 9, Nr. 2 (März 2021): 14–21. http://dx.doi.org/10.21276/ijircst.2021.9.2.3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Heald, Graeme. „Issues with Reliability of Fuzzy Logic“. International Journal of Trend in Scientific Research and Development Volume-2, Issue-6 (31.10.2018): 829–34. http://dx.doi.org/10.31142/ijtsrd18573.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Mataram, I. Made. „FUZZY LOGIC STATIC SYNCHRONOUS COMPENSATOR (FLSTATCOM)“. Majalah Ilmiah Teknologi Elektro 15, Nr. 1 (15.06.2016): 34–37. http://dx.doi.org/10.24843/mite.1501.06.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

U. Kulkarni, Akshay, Amit M. Potadar, Amogh R. Gaonkar und Amresh Kumar. „Fuzzy Logic Based Career Guidance System“. Bonfring International Journal of Software Engineering and Soft Computing 6, Special Issue (31.10.2016): 01–04. http://dx.doi.org/10.9756/bijsesc.8230.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Raj, A. Stanley, D. Hudson Oliver und Y. Srinivas. „Geoelectrical Data Inversion by Clustering Techniques of Fuzzy Logic to Estimate the Subsurface Layer Model“. International Journal of Geophysics 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/134834.

Der volle Inhalt der Quelle
Annotation:
Soft computing based geoelectrical data inversion differs from conventional computing in fixing the uncertainty problems. It is tractable, robust, efficient, and inexpensive. In this paper, fuzzy logic clustering methods are used in the inversion of geoelectrical resistivity data. In order to characterize the subsurface features of the earth one should rely on the true field oriented data validation. This paper supports the field data obtained from the published results and also plays a crucial role in making an interdisciplinary approach to solve complex problems. Three clustering algorithms of fuzzy logic, namely, fuzzyC-means clustering, fuzzyK-means clustering, and fuzzy subtractive clustering, were analyzed with the help of fuzzy inference system (FIS) training on synthetic data. Here in this approach, graphical user interface (GUI) was developed with the integration of three algorithms and the input data (AB/2 and apparent resistivity), while importing will process each algorithm and interpret the layer model parameters (true resistivity and depth). A complete overview on the three above said algorithms is presented in the text. It is understood from the results that fuzzy logic subtractive clustering algorithm gives more reliable results and shows efficacy of soft computing tools in the inversion of geoelectrical resistivity data.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

PERLOVSKY, LEONID I. „FUZZY DYNAMIC LOGIC“. New Mathematics and Natural Computation 02, Nr. 01 (März 2006): 43–55. http://dx.doi.org/10.1142/s1793005706000300.

Der volle Inhalt der Quelle
Annotation:
Fuzzy logic is extended toward dynamic adaptation of the degree of fuzziness. The motivation is to explain the process of learning as a joint model improvement and fuzziness reduction. A learning system with fuzzy models is introduced. Initially, the system is in a highly fuzzy state of uncertain knowledge, and it dynamically evolves into a low-fuzzy state of certain knowledge. We present an image recognition example of patterns below clutter. The paper discusses relationships to formal logic, fuzzy logic, complexity and draws tentative connections to Aristotelian theory of forms and working of the mind.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Muhammad Saqlain, Kashaf Naz, Kashf Gaffar und Muhammad Naveed Jafar. „Fuzzy Logic Controller“. Scientific Inquiry and Review 3, Nr. 3 (20.09.2019): 16–29. http://dx.doi.org/10.32350/sir.33.02.

Der volle Inhalt der Quelle
Annotation:
In this research paper, the impact of water pH on detergent was measured by constructing a Fuzzy Logic Controller (FLC) based on Intuitionistic Fuzzy Numbers (IFNs) by incorporating three linguistic inputs and one output as taken by Saeed. M. et al. [1]. The inference process was carried out using MATLAB fuzzy logic toolbox and the results were compared with FLC based on fuzzy numbers. The objective of the study was the comparison of FLC based on intuitionistic and fuzzy numbers. The results showed that FLC based on IFNs is approximately the same but has more precise values. So, IFNs based FLC can be used in the Instinctive Laundry System.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

GAO, XIAOYU, Q. S. GAO, Y. HU und L. LI. „A PROBABILITY-LIKE NEW FUZZY SET THEORY“. International Journal of Pattern Recognition and Artificial Intelligence 20, Nr. 03 (Mai 2006): 441–62. http://dx.doi.org/10.1142/s0218001406004697.

Der volle Inhalt der Quelle
Annotation:
In this paper, the reasons for the shortcoming of Zadeh's fuzzy set theory — it cannot correctly reflect different kinds of fuzzy phenomenon in the natural world — are discussed. In addition, the proof of the error of Zadeh's fuzzy set theory — it incorrectly defined the set complement that cannot exist in Zadeh's fuzzy set theory — is proposed. This error of Zadeh's fuzzy set theory causes confusion in thinking, logic and conception. It causes the seriously mistaken belief that logics of fuzzy sets necessarily go against classical and normal thinking, logic and conception. Two new fuzzy set theories, C-fuzzy set theory and probability-like fuzzy set theory, the N-fuzzy set theory, are proposed. The two are equivalent, and both overcome the error and shortcoming of Zadeh's fuzzy set theory, and they are consistent with normal, natural and classical thinking, logic and concepts. The similarities of N-fuzzy set theory with probability theory are also examined.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Hayward, Gordon, und Valerie Davidson. „Fuzzy logic applications“. Analyst 128, Nr. 11 (2003): 1304. http://dx.doi.org/10.1039/b312701j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Costa, A., A. De Gloria, F. Giudici und M. Olivieri. „Fuzzy logic microcontroller“. IEEE Micro 17, Nr. 1 (1997): 66–74. http://dx.doi.org/10.1109/40.566209.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Vojtáš, Peter. „Fuzzy logic programming“. Fuzzy Sets and Systems 124, Nr. 3 (Dezember 2001): 361–70. http://dx.doi.org/10.1016/s0165-0114(01)00106-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Buckley, J. J., und W. Siler. „L∞ fuzzy logic“. Fuzzy Sets and Systems 107, Nr. 3 (November 1999): 309–22. http://dx.doi.org/10.1016/s0165-0114(97)00294-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie