Auswahl der wissenschaftlichen Literatur zum Thema „Gas microsensors“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Gas microsensors" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Gas microsensors"

1

Sandfeld, Tobias, Louise Vinther Grøn, Laura Munoz, Rikke Louise Meyer, Klaus Koren, and Jo Philips. "Considerations on the use of microsensors to profile dissolved H2 concentrations in microbial electrochemical reactors." PLOS ONE 19, no. 1 (2024): e0293734. http://dx.doi.org/10.1371/journal.pone.0293734.

Der volle Inhalt der Quelle
Annotation:
Measuring the distribution and dynamics of H2 in microbial electrochemical reactors is valuable to gain insights into the processes behind novel bioelectrochemical technologies, such as microbial electrosynthesis. Here, a microsensor method to measure and profile dissolved H2 concentrations in standard H-cell reactors is described. Graphite cathodes were oriented horizontally to enable the use of a motorized microprofiling system and a stereomicroscope was used to place the H2 microsensor precisely on the cathode surface. Profiling was performed towards the gas-liquid interface, while preservi
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jung, Dong Geon, Junyeop Lee, Jin Beom Kwon, Bohee Maeng, Hee Kyung An, and Daewoong Jung. "Low-Voltage-Driven SnO2-Based H2S Microsensor with Optimized Micro-Heater for Portable Gas Sensor Applications." Micromachines 13, no. 10 (2022): 1609. http://dx.doi.org/10.3390/mi13101609.

Der volle Inhalt der Quelle
Annotation:
To realize portable gas sensor applications, it is necessary to develop hydrogen sulfide (H2S) microsensors capable of operating at lower voltages with high response, good selectivity and stability, and fast response and recovery times. A gas sensor with a high operating voltage (>5 V) is not suitable for portable applications because it demands additional circuitry, such as a charge pump circuit (supply voltage of common circuits is approximately 1.8–5 V). Among H2S microsensor components, that is, the substrate, sensing area, electrode, and micro-heater, the proper design of the micro-hea
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Vallejos, Stella, Zdenka Fohlerová, Milena Tomić, Isabel Gràcia, Eduard Figueras, and Carles Cané. "Room Temperature Ethanol Microsensors Based on Silanized Tungsten Oxide Nanowires." Proceedings 2, no. 13 (2018): 790. http://dx.doi.org/10.3390/proceedings2130790.

Der volle Inhalt der Quelle
Annotation:
Gas microsensors based on tungsten oxide (WO3-x) nanowires (NWs) silanized with APTES (3-aminopropyltriethoxysilane) are developed in this work. These surface modified microsensors are highly sensitive to ethanol at room temperature (RT) via photoactivation and show enhanced selectivity towards other volatile organic compounds (VOCs) including acetone and toluene.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Siegal, M. P., W. G. Yelton, D. L. Overmyer, and P. P. Provencio. "Nanoporous Carbon Films for Gas Microsensors." Langmuir 20, no. 4 (2004): 1194–98. http://dx.doi.org/10.1021/la034460s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Siegal, M. P., and W. G. Yelton. "Nanoporous-Carbon Coatings for Gas-Phase Chemical Microsensors." Advances in Science and Technology 48 (October 2006): 161–68. http://dx.doi.org/10.4028/www.scientific.net/ast.48.161.

Der volle Inhalt der Quelle
Annotation:
Nanoporous-carbon (NPC) is compared directly to commonly-used polymers as a gassorbing coating material on surface acoustic wave (SAW) microsensor devices. The sensing capability of these materials is measured for volatile organic compounds (VOCs), toxic-industrial chemicals (TICs), and a chemical warfare agents (CWA) simulant. All of the coatings reversibly sorb and desorb the volatile VOC and TIC compounds, however, NPC outperforms the polymers over the range of analyte concentrations studied, especially at the lowest levels, by multiple ordersof- magnitude. Conversely, NPC has good retentio
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Penza, M., R. Rossi, M. Alvisi, et al. "Metalloporphyrin-Modified Carbon Nanotube Layers for Gas Microsensors." Sensor Letters 9, no. 2 (2011): 913–19. http://dx.doi.org/10.1166/sl.2011.1643.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bolotov, V. V., P. M. Korusenko, S. N. Nesov, et al. "Nanocomposite por-Si/SnOx layers formation for gas microsensors." Materials Science and Engineering: B 177, no. 1 (2012): 1–7. http://dx.doi.org/10.1016/j.mseb.2011.09.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Swart, N., and A. Nathan. "Numerical study of heat transport in thermally isolated flow-rate microsensors." Canadian Journal of Physics 70, no. 10-11 (1992): 904–7. http://dx.doi.org/10.1139/p92-143.

Der volle Inhalt der Quelle
Annotation:
The temperature distributions in thermally isolated cantilever based flow-rate microsensors have been numerically calculated for different gas temperatures and gas velocities. In particular, we investigate the efficiency of heat transfer to the flowing gas and corresponding directions of heat flow in the system. The above analysis is based on a solution to the energy equation under appropriate boundary conditions. The equation was discretized using a control volume procedure, based on which an equivalent circuit was devised and subsequently simulated using a circuit simulator such as SPICE.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Vittoriosi, Alice, Juergen J. Brandner, and Roland Dittmeyer. "Integrated temperature microsensors for the characterization of gas heat transfer." Journal of Physics: Conference Series 362 (May 23, 2012): 012021. http://dx.doi.org/10.1088/1742-6596/362/1/012021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Penza, M., R. Rossi, M. Alvisi, D. Suriano, and E. Serra. "Pt-modified carbon nanotube networked layers for enhanced gas microsensors." Thin Solid Films 520, no. 3 (2011): 959–65. http://dx.doi.org/10.1016/j.tsf.2011.04.178.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Gas microsensors"

1

Kumar, Abhishek. "Development, characterization and experimental validation of metallophthalocyanines based microsensors devoted to monocyclic aromatic hydrocarbon monitoring in air." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22635/document.

Der volle Inhalt der Quelle
Annotation:
Résumé indisponible<br>This PhD work is dedicated to investigate potentialities of phthalocyanines materials to realize a Quartz Crystal Microbalance (QCM) sensor for Benzene, Toluene and Xylenes (BTX) detection in air. The goal is to develop a sensor-microsystem capable of measuring BTX concentrations quantitatively below the environmental guidelines with sufficient accuracy. To achieve these objectives, our strategies mainly focused on experimental works encompassing sensors realization, sensing material characterizations, development of gas-testing facility and sensor testing for different
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Abercrombie, Matthew G. "Acoustic microsensor with optical detection for high-temperature, high-pressure environments." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/19467.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Al-Khalifa, Sherzad. "Identification of a binary gas mixture from a single resistive microsensor." Thesis, University of Warwick, 2000. http://wrap.warwick.ac.uk/52652/.

Der volle Inhalt der Quelle
Annotation:
Increasing concern about the rapid escalation of environmental pollution has led to strong legislation to ensure, for example, that the emission of pollutants from vehicles and industries is controlled to an acceptable level. As a consequence, there has been a rapid expansion of research into developing more efficient and low-cost gas monitoring systems. Currently, commercial solid-state atmospheric gas detection systems are based on one sensor for each gas, while research systems are an array of sensors for the detection of multiple gases. In this research, techniques are developed whereby mo
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lawson, Bruno. "Nouvelle approche de suivi non invasif de l'alcoolémie par perspiration à l'aide de multicapteurs MOX." Electronic Thesis or Diss., Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0698.

Der volle Inhalt der Quelle
Annotation:
Nous proposons dans le cadre de ce travail de thèse, une nouvelle approche de la détection non invasive de l’alcoolémie sanguine à l’aide de microcapteurs d’éthanol à base de SnO2. Cette méthodologie se base sur une détection indirecte de l’alcoolémie sanguine par une mesure des vapeurs d’éthanol émises par la perspiration cutanée suite à une consommation d’alcool. Afin de valider cette approche, il a fallu dans un premier temps démontrer la pertinence et la faisabilité de cette méthodologie de détection par la réalisation d’essais cliniques pilotes en collaboration avec une équipe médicale d’
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Le, Pennec Fabien. "Développement de microcapteurs pour la mesure de dioxyde de carbone (CO2) : application au suivi de la qualité de l’air." Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0148.

Der volle Inhalt der Quelle
Annotation:
A la différence de la pollution de l’air extérieur, celle de l’air intérieur est restée relativement peu étudiée jusqu’au début des années 2000. Pourtant, nous passons en moyenne 85 % de notre temps dans des environnements clos (domicile, bureaux, transports…) dans lesquels nous sommes exposés à de nombreux polluants. De nombreuses études ont montré que la mesure de la concentration du dioxyde de carbone, permet d’évaluer le confinement de l’air intérieur. Pour mesurer les polluants, nous pouvons distinguer les analyseurs et les microcapteurs, avec chacun ses avantages et ses inconvénients. Da
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chawich, Juliana. "ZnO/GaAs-based acoustic waves microsensor for the detection of bacteria in complex liquid media." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCD012/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse s’inscrit dans le cadre d’une cotutelle internationale entre l’Université de Bourgogne Franche-Comté en France et l’Université de Sherbrooke au Canada. Elle porte sur le développement d'un biocapteur miniature pour la détection et la quantification de bactéries dans des milieux liquides complexes. La bactérie visée est l’Escherichia coli (E. coli), régulièrement mise en cause dans des épidémies d'infections alimentaires, et parfois meurtrière.La géométrie du biocapteur consiste en une membrane en arséniure de gallium (GaAs) sur laquelle est déposé un film mince piézoélectrique d’ox
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tsai, Ming-Chang, and 蔡明璋. "Gas Microsensors Based on the Nanoporous Structures." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/72631288731412096447.

Der volle Inhalt der Quelle
Annotation:
碩士<br>逢甲大學<br>自動控制工程學系<br>102<br>The research develops self-assembled anodic titanium oxide arrays fabricated by anodization and combines the microheater and temperature sensor manufactured by the photolithography and life-off process of the micro-electro-mechanical system technology to selectively detect the CO and CHCl3 gas in room temperature. The advantages of the gas sensors combine anodic titanium oxide thin film, noble metal electrodes, microheater and temperature sensor in the chip have small volume, high stability, high sensitivity and accuracy. The TiO2 arrays fabricated by anodizat
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Liu, Tze-chun, and 劉澤鈞. "Gas Microsensors Based on Nanoporous Anodic Aluminum Oxide." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/29622697040391545281.

Der volle Inhalt der Quelle
Annotation:
碩士<br>逢甲大學<br>自動控制工程所<br>99<br>A novel CO gas microsensor with tungsten oxide (WO3) sensing film on nanoporous anodic aluminum oxide (AAO) layer has been performed on anodic aluminum oxide template at operation temperature of 25 ℃. Based on microelectromechanical system (MEMS) technology, the microstructures are realized with porous AAO template, WO3 thin films, heaters, and interdigital temperature sensors. The platinum films were deposited to form the heaters, temperature sensors, and interdigital electrodes. To enhance sensitivity, the sputtered WO3 was grown on various nanoporous AAO stru
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Yang, Ming-Zhi, and 楊閔智. "Integrated Gas Microsensors Array with Circuits on a Chip." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/65522409721908871607.

Der volle Inhalt der Quelle
Annotation:
博士<br>國立中興大學<br>機械工程學系所<br>103<br>This study illustrates an integrated gas microsensors array chip fabricated using the standard 0.18 μm CMOS (complementary metal oxide semiconductor) process. The chip includes four gas sensors, four readout circuits and thermometers. The objectives of this study are to utilize the integrated gas microsensors array chip to detect four kinds of volatile organic compound (VOC) gases, the relative humidity of the surroundings and the ambient temperature. After completion of the CMOS process, the chip requires a post-process to etch the sacrificial layer between t
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhuang, Yu-Xiang, and 莊寓翔. "Development of Nanofiber-based Gas Microsensors by Using Electrospun Technology." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/49677804564614472572.

Der volle Inhalt der Quelle
Annotation:
碩士<br>逢甲大學<br>自動控制工程學系<br>103<br>The research presents the design of metal-oxide semiconductor gas microsensors based on MEMS technology and nano-properties for sensing CO gas. Sensitivity is defined by measuring the variation of resistance for sensing layers caused by Schottky contanct when gas specimens adsorb on the surface of sensing films. In2O3 nanofibers sensing film with heaters is fabricated by electrospinning, lithography and deep etching processes. The devices can increase effective sensing area for chemical reactions on which CO gas molecules can be adsorbed to improve operation pr
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Bücher zum Thema "Gas microsensors"

1

Al-Khalifa, Sherzad. Identification of a binary gas mixture from a single resistive microsensor. typescript, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Advanced Nanomaterials for Inexpensive Gas Microsensors. Elsevier, 2020. http://dx.doi.org/10.1016/c2017-0-02009-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Valero, Eduard Llobet. Advanced Nanomaterials for Inexpensive Gas Microsensors: Synthesis, Integration and Applications. Elsevier, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Valero, Eduard Llobet. Advanced Nanomaterials for Inexpensive Gas Microsensors: Synthesis, Integration and Applications. Elsevier, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zürich, Eidgenössische Technische Hochschule, ed. CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Gas microsensors"

1

Panda, Dhananjaya, and Koteswara Rao Peta. "FEM Analysis of Split Electrode IDTs Designed Lithium Tantalate-Polyaniline SAW Gas Sensor." In Microactuators, Microsensors and Micromechanisms. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20353-4_20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Aguir, Khalifa. "Responses and Electrical Properties of Gas Microsensors." In Chemical Sensors and Biosensors. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118561799.ch7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Siegal, M. P., and W. G. Yelton. "Nanoporous-Carbon Coatings for Gas-Phase Chemical Microsensors." In Advances in Science and Technology. Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-04-4.161.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Penza, M., R. Rossi, M. Alvisi, et al. "Gas Microsensors with Metalloporphyrin-Functionalized Carbon Nanotube Networked Layers." In Lecture Notes in Electrical Engineering. Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1324-6_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Micheli, Adolph L., Shih-Chia Chang, and David B. Hicks. "Tin Oxide Gas Sensing Microsensors from Metallo-Organic Deposited (MOD) Thin Films." In Ceramic Engineering and Science Proceedings. John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470320419.ch9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rossi, R., M. Alvisi, G. Cassano, et al. "Tuned Sensing Properties of Metal-Modified Carbon-Based Nanostructures Layers for Gas Microsensors." In Lecture Notes in Electrical Engineering. Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0935-9_20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Menini, Philippe. "Gas Microsensor Technology." In Chemical Sensors and Biosensors. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118561799.ch8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Adiwidya, Andre Suwardana, Tania Christiana Alexandra, Michelle Kurniawan, et al. "Greenhouse Gas Prediction Using LSTM Algorithm Based on Microsensor in Bandung City, Indonesia." In Communications in Computer and Information Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-75861-4_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Debéda, Hélène, and Isabelle Dufour. "Resonant microcantilever devices for gas sensing." In Advanced Nanomaterials for Inexpensive Gas Microsensors. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-814827-3.00009-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Llobet, Eduard. "Introduction." In Advanced Nanomaterials for Inexpensive Gas Microsensors. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-814827-3.00001-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Gas microsensors"

1

Trabelsi, Houyem, Isabel Gràcia, Khaled Alouani, Carles Cané, and Stella Vallejos. "Fabrication and characterization of Cu2S-based gas microsensors with sensitivity to NO2." In 2025 15th Spanish Conference on Electron Devices (CDE). IEEE, 2025. https://doi.org/10.1109/cde66381.2025.11038855.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Contaret, T., S. Gomri, J. L. Seguin, and K. Aguir. "Noise spectroscopy measurements in metallic oxide gas microsensors." In 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716417.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bolotov, Valeriy V., Vladislav E. Roslikov, Egor V. Knyazev, Roman V. Shelyagin, Ekaterina A. Kurdyukova, and Dmitriy V. Cheredov. "Synthesis of nanocomposite CNT/SnOx for Gas microsensors." In 2010 11th International Conference and Seminar of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM 2010). IEEE, 2010. http://dx.doi.org/10.1109/edm.2010.5568669.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kozlov, A. G. "Thermal analysis of micro-hotplates for catalytic gas microsensors." In 2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2015. http://dx.doi.org/10.1109/eurosime.2015.7103094.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Castro-Hurtado, Irene, Isabel Ayerdi, Enrique Castano, Angel Ma Gutierrez, and Juan Ramon Arraibi. "Microsensors for the multiparametric analysis of natural gas quality." In 2015 10th Spanish Conference on Electron Devices (CDE). IEEE, 2015. http://dx.doi.org/10.1109/cde.2015.7087482.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Walton, Robin M., Richard E. Cavicchi, Stephen Semancik, et al. "Solid state gas microsensors for environmental and industrial monitoring." In Photonics East '99, edited by Tuan Vo-Dinh and Robert L. Spellicy. SPIE, 1999. http://dx.doi.org/10.1117/12.372861.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tomic, Milena, Isabel Gracia, Marc Salleras, Eduard Figueras, Carles Cane, and Stella Vallejos. "Gas Microsensors Based on Cerium Oxide Modified Tungsten Oxide Nanowires." In 2018 12th Spanish Conference on Electron Devices (CDE). IEEE, 2018. http://dx.doi.org/10.1109/cde.2018.8597067.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Benkstein, K. D., A. Vergara, C. B. Montgomery, S. Semancik, and B. Raman. "Methods for optimizing and extending the performance of chemiresistive gas microsensors." In 2013 IEEE Sensors. IEEE, 2013. http://dx.doi.org/10.1109/icsens.2013.6688194.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ben Youssef, I., F. Sarry, O. Elmazria, et al. "Development of new polyurethanimide tailored copolymers for SO2 SAW gas microsensors." In 2010 IEEE Ultrasonics Symposium (IUS). IEEE, 2010. http://dx.doi.org/10.1109/ultsym.2010.5935523.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kozlov, A. G. "Modelling of thermal processes in catalytic gas microsensors implementing a measurement of combustible gas concentration." In 2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2016. http://dx.doi.org/10.1109/eurosime.2016.7463374.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Gas microsensors"

1

Grate, Jay W., and D. A. Nelson. Sorptive Polymers and Photopatterned Films for Gas Phase Chemical Microsensors and Arrays. Office of Scientific and Technical Information (OSTI), 2002. http://dx.doi.org/10.2172/15010066.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Dr. Steve Semancik. Correlation of Chemisorption and Electronic Effects for Metal Oxide Interfaces: Transducing Principles for Temperature Programmed Gas Microsensors. Office of Scientific and Technical Information (OSTI), 2002. http://dx.doi.org/10.2172/791537.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Semancik, Steve, Michael Tarlov, Richard Cavicchi, John S. Suehle, and Thomas J. McAvoy. Correlation of Chemisorption and Electronic Effects for Metal/Oxide Interfaces: Transducing Principles for Temperature-Programmed Gas Microsensors. Office of Scientific and Technical Information (OSTI), 1999. http://dx.doi.org/10.2172/833292.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Semancik, Steve, Richard E. Cavicchi, and Thomas J. McAvoy. Correlation of Chemisorption and Electronic Effects for Metal/Oxide Interfaces: Transducing Principles for Temperature-Programmed Gas Microsensors. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/833296.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

S. Semancik, R. E. Cavicchi, D. L. DeVoe, and T. J. McAvoy. Correlation of Chemisorption and Electronic Effects for Metal Oxide Interfaces: Transducing Principles for Temperature Programmed Gas Microsensors (Final Report). Office of Scientific and Technical Information (OSTI), 2001. http://dx.doi.org/10.2172/793127.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

CASALNUOVO, STEPHEN A., GREGORY CHARLES ASON, EDWIN J. HELLER, VINCENT M. HIETALA, ALBERT G. BACA, and S. L. HIETALA. The development of integrated chemical microsensors in GaAs. Office of Scientific and Technical Information (OSTI), 1999. http://dx.doi.org/10.2172/750935.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Davis, Chad Edward, Michael Loren Thomas, Jerome L. Wright, et al. Potential application of microsensor technology in radioactive waste management with emphasis on headspace gas detection. Office of Scientific and Technical Information (OSTI), 2004. http://dx.doi.org/10.2172/919659.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hughes, R. C., and G. C. Osbourn. The final LDRD report for the project entitled: {open_quotes}Enhanced analysis of complex gas mixtures by pattern recognition of microsensor array signals{close_quotes}. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/393333.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!