Inhaltsverzeichnis

  1. Zeitschriftenartikel

Auswahl der wissenschaftlichen Literatur zum Thema „Gating mechanism“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Gating mechanism" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Gating mechanism"

1

Ulbricht, Mathias. "Gating mechanism under pressure." Nature 519, no. 7541 (2015): 41–42. http://dx.doi.org/10.1038/519041a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Csanády, László. "Application of rate-equilibrium free energy relationship analysis to nonequilibrium ion channel gating mechanisms." Journal of General Physiology 134, no. 2 (2009): 129–36. http://dx.doi.org/10.1085/jgp.200910268.

Der volle Inhalt der Quelle
Annotation:
Rate-equilibrium free energy relationship (REFER) analysis provides information on transition-state structures and has been applied to reveal the temporal sequence in which the different regions of an ion channel protein move during a closed–open conformational transition. To date, the theory used to interpret REFER relationships has been developed only for equilibrium mechanisms. Gating of most ion channels is an equilibrium process, but recently several ion channels have been identified to have retained nonequilibrium traits in their gating cycles, inherited from transporter-like ancestors. So far it has not been examined to what extent REFER analysis is applicable to such systems. By deriving the REFER relationships for a simple nonequilibrium mechanism, this paper addresses whether an equilibrium mechanism can be distinguished from a nonequilibrium one by the characteristics of their REFER plots, and whether information on the transition-state structures can be obtained from REFER plots for gating mechanisms that are known to be nonequilibrium cycles. The results show that REFER plots do not carry information on the equilibrium nature of the underlying gating mechanism. Both equilibrium and nonequilibrium mechanisms can result in linear or nonlinear REFER plots, and complementarity of REFER slopes for opening and closing transitions is a trivial feature true for any mechanism. Additionally, REFER analysis provides limited information about the transition-state structures for gating schemes that are known to be nonequilibrium cycles.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Enkvetchakul, D., and C. G. Nichols. "Gating Mechanism of KATP Channels." Journal of General Physiology 122, no. 5 (2003): 471–80. http://dx.doi.org/10.1085/jgp.200308878.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Fu, Tianmin. "Molecular Mechanism of TRPM2 Gating." Biophysical Journal 116, no. 3 (2019): 299a—300a. http://dx.doi.org/10.1016/j.bpj.2018.11.1624.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhao, Piao, Cheng Tang, Yuqin Yang, et al. "A new polymodal gating model of the proton-activated chloride channel." PLOS Biology 21, no. 9 (2023): e3002309. http://dx.doi.org/10.1371/journal.pbio.3002309.

Der volle Inhalt der Quelle
Annotation:
The proton–activated chloride (PAC) channel plays critical roles in ischemic neuron death, but its activation mechanisms remain elusive. Here, we investigated the gating of PAC channels using its novel bifunctional modulator C77304. C77304 acted as a weak activator of the PAC channel, causing moderate activation by acting on its proton gating. However, at higher concentrations, C77304 acted as a weak inhibitor, suppressing channel activity. This dual function was achieved by interacting with 2 modulatory sites of the channel, each with different affinities and dependencies on the channel’s state. Moreover, we discovered a protonation–independent voltage activation of the PAC channel that appears to operate through an ion–flux gating mechanism. Through scanning–mutagenesis and molecular dynamics simulation, we confirmed that E181, E257, and E261 in the human PAC channel serve as primary proton sensors, as their alanine mutations eliminated the channel’s proton gating while sparing the voltage–dependent gating. This proton–sensing mechanism was conserved among orthologous PAC channels from different species. Collectively, our data unveils the polymodal gating and proton–sensing mechanisms in the PAC channel that may inspire potential drug development.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Elinder, Fredrik, and Peter Århem. "Metal ion effects on ion channel gating." Quarterly Reviews of Biophysics 36, no. 4 (2003): 373–427. http://dx.doi.org/10.1017/s0033583504003932.

Der volle Inhalt der Quelle
Annotation:
1. Introduction 3742. Metals in biology 3783. The targets: structure and function of ion channels 3804. General effects of metal ions on channels 3824.1 Three types of general effect 3824.2 The main regulators 3835. Effects on gating: mechanisms and models 3845.1 Screening surface charges (Mechanism A) 3875.1.1 The classical approach 3875.1.1.1 Applying the Grahame equation 3885.1.2 A one-site approach 3915.2 Binding and electrostatically modifying the voltage sensor (Mechanism B) 3915.2.1 The classical model 3915.2.1.1 The classical model as state diagram – introducing basic channel kinetics 3925.2.2 A one-site approach 3955.2.2.1 Explaining state-dependent binding – a simple electrostatic mechanism 3955.2.2.2 The relation between models assuming binding to smeared and to discrete charges 3965.2.2.3 The special case of Zn2+ – no binding in the open state 3965.2.2.4 Opposing effects of Cd2+ on hyperpolarization-activated channels 3985.3 Binding and interacting non-electrostatically with the voltage sensor (Mechanism C) 3985.3.1 Combining mechanical slowing of opening and closing with electrostatic modification of voltage sensor 4005.4 Binding to the pore – a special case of one-site binding models (Mechanism D) 4005.4.1 Voltage-dependent pore-block – adding extra gating 4015.4.2 Coupling pore block to gating 4025.4.2.1 The basic model again 4025.4.2.2 A special case – Ca2+ as necessary cofactor for closing 4035.4.2.3 Expanding the basic model – Ca2+ affecting a voltage-independent step 4045.5 Summing up 4056. Quantifying the action: comparing the metal ions 4076.1 Steady-state parameters are equally shifted 4076.2 Different metal ions cause different shifts 4086.3 Different metal ions slow gating differently 4106.4 Block of ion channels 4127. Locating the sites of action 4127.1 Fixed surface charges involved in screening 4137.2 Binding sites 4137.2.1 Group 2 ions 4147.2.2 Group 12 ions 4148. Conclusions and perspectives 4159. Appendix 41610. Acknowledgements 41811. References 418Metal ions affect ion channels either by blocking the current or by modifying the gating. In the present review we analyse the effects on the gating of voltage-gated channels. We show that the effects can be understood in terms of three main mechanisms. Mechanism A assumes screening of fixed surface charges. Mechanism B assumes binding to fixed charges and an associated electrostatic modification of the voltage sensor. Mechanism C assumes binding and an associated non-electrostatic modification of the gating. To quantify the non-electrostatic effect we introduced a slowing factor, A. A fourth mechanism (D) is binding to the pore with a consequent pore block, and could be a special case of Mechanisms B or C. A further classification considers whether the metal ion affects a single site or multiple sites. Analysing the properties of these mechanisms and the vast number of studies of metal ion effects on different voltage-gated ion channels we conclude that group 2 ions mainly affect channels by classical screening (a version of Mechanism A). The transition metals and the Zn group ions mainly bind to the channel and electrostatically modify the gating (Mechanism B), causing larger shifts of the steady-state parameters than the group 2 ions, but also different shifts of activation and deactivation curves. The lanthanides mainly bind to the channel and both electrostatically and non-electrostatically modify the gating (Mechanisms B and C). With the exception of the ether-à-go-go-like channels, most channel types show remarkably similar ion-specific sensitivities.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Navarro, Marco A., Lorin S. Milescu, and Mirela Milescu. "Unlocking the gating mechanism of Kv2.1 using guangxitoxin." Journal of General Physiology 151, no. 3 (2018): 275–78. http://dx.doi.org/10.1085/jgp.201812254.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lopez, William, Jayalakshmi Ramachandran, Abdelaziz Alsamarah, Yun Luo, Andrew L. Harris, and Jorge E. Contreras. "Mechanism of gating by calcium in connexin hemichannels." Proceedings of the National Academy of Sciences 113, no. 49 (2016): E7986—E7995. http://dx.doi.org/10.1073/pnas.1609378113.

Der volle Inhalt der Quelle
Annotation:
Aberrant opening of nonjunctional connexin hemichannels at the plasma membrane is associated with many diseases, including ischemia and muscular dystrophy. Proper control of hemichannel opening is essential to maintain cell viability and is achieved by physiological levels of extracellular Ca2+, which drastically reduce hemichannel activity. Here we examined the role of conserved charged residues that form electrostatic networks near the extracellular entrance of the connexin pore, a region thought to be involved in gating rearrangements of hemichannels. Molecular dynamics simulations indicate discrete sites for Ca2+ interaction and consequent disruption of salt bridges in the open hemichannels. Experimentally, we found that disruption of these salt bridges by mutations facilitates hemichannel closing. Two negatively charged residues in these networks are putative Ca2+ binding sites, forming a Ca2+-gating ring near the extracellular entrance of the pore. Accessibility studies showed that this Ca2+-bound gating ring does not prevent access of ions or small molecules to positions deeper into the pore, indicating that the physical gate is below the Ca2+-gating ring. We conclude that intra- and intersubunit electrostatic networks at the extracellular entrance of the hemichannel pore play critical roles in hemichannel gating reactions and are tightly controlled by extracellular Ca2+. Our findings provide a general mechanism for Ca2+ gating among different connexin hemichannel isoforms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bompadre, Silvia G., Tomohiko Ai, Jeong Han Cho, et al. "CFTR Gating I." Journal of General Physiology 125, no. 4 (2005): 361–75. http://dx.doi.org/10.1085/jgp.200409227.

Der volle Inhalt der Quelle
Annotation:
The CFTR chloride channel is activated by phosphorylation of serine residues in the regulatory (R) domain and then gated by ATP binding and hydrolysis at the nucleotide binding domains (NBDs). Studies of the ATP-dependent gating process in excised inside-out patches are very often hampered by channel rundown partly caused by membrane-associated phosphatases. Since the severed ΔR-CFTR, whose R domain is completely removed, can bypass the phosphorylation-dependent regulation, this mutant channel might be a useful tool to explore the gating mechanisms of CFTR. To this end, we investigated the regulation and gating of the ΔR-CFTR expressed in Chinese hamster ovary cells. In the cell-attached mode, basal ΔR-CFTR currents were always obtained in the absence of cAMP agonists. Application of cAMP agonists or PMA, a PKC activator, failed to affect the activity, indicating that the activity of ΔR-CFTR channels is indeed phosphorylation independent. Consistent with this conclusion, in excised inside-out patches, application of the catalytic subunit of PKA did not affect ATP-induced currents. Similarities of ATP-dependent gating between wild type and ΔR-CFTR make this phosphorylation-independent mutant a useful system to explore more extensively the gating mechanisms of CFTR. Using the ΔR-CFTR construct, we studied the inhibitory effect of ADP on CFTR gating. The Ki for ADP increases as the [ATP] is increased, suggesting a competitive mechanism of inhibition. Single channel kinetic analysis reveals a new closed state in the presence of ADP, consistent with a kinetic mechanism by which ADP binds at the same site as ATP for channel opening. Moreover, we found that the open time of the channel is shortened by as much as 54% in the presence of ADP. This unexpected result suggests another ADP binding site that modulates channel closing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tiffner, Adéla, Lena Maltan, Sarah Weiß, and Isabella Derler. "The Orai Pore Opening Mechanism." International Journal of Molecular Sciences 22, no. 2 (2021): 533. http://dx.doi.org/10.3390/ijms22020533.

Der volle Inhalt der Quelle
Annotation:
Cell survival and normal cell function require a highly coordinated and precise regulation of basal cytosolic Ca2+ concentrations. The primary source of Ca2+ entry into the cell is mediated by the Ca2+ release-activated Ca2+ (CRAC) channel. Its action is stimulated in response to internal Ca2+ store depletion. The fundamental constituents of CRAC channels are the Ca2+ sensor, stromal interaction molecule 1 (STIM1) anchored in the endoplasmic reticulum, and a highly Ca2+-selective pore-forming subunit Orai1 in the plasma membrane. The precise nature of the Orai1 pore opening is currently a topic of intensive research. This review describes how Orai1 gating checkpoints in the middle and cytosolic extended transmembrane regions act together in a concerted manner to ensure an opening-permissive Orai1 channel conformation. In this context, we highlight the effects of the currently known multitude of Orai1 mutations, which led to the identification of a series of gating checkpoints and the determination of their role in diverse steps of the Orai1 activation cascade. The synergistic action of these gating checkpoints maintains an intact pore geometry, settles STIM1 coupling, and governs pore opening. We describe the current knowledge on Orai1 channel gating mechanisms and summarize still open questions of the STIM1–Orai1 machinery.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!