Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „GENE DELIVERY APPLICATIONS“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "GENE DELIVERY APPLICATIONS" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "GENE DELIVERY APPLICATIONS"
Huang, Rih-Yang, Zhuo-Hao Liu, Wei-Han Weng und Chien-Wen Chang. „Magnetic nanocomplexes for gene delivery applications“. Journal of Materials Chemistry B 9, Nr. 21 (2021): 4267–86. http://dx.doi.org/10.1039/d0tb02713h.
Der volle Inhalt der QuelleChen, Chih-Kuang, Ping-Kuan Huang, Wing-Cheung Law, Chia-Hui Chu, Nai-Tzu Chen und Leu-Wei Lo. „Biodegradable Polymers for Gene-Delivery Applications“. International Journal of Nanomedicine Volume 15 (März 2020): 2131–50. http://dx.doi.org/10.2147/ijn.s222419.
Der volle Inhalt der QuelleKatz, M. G., A. S. Fargnoli, L. A. Pritchette und C. R. Bridges. „Gene delivery technologies for cardiac applications“. Gene Therapy 19, Nr. 6 (15.03.2012): 659–69. http://dx.doi.org/10.1038/gt.2012.11.
Der volle Inhalt der QuelleMakkonen, Kaisa-Emilia, Kari Airenne und Seppo Ylä-Herttulala. „Baculovirus-mediated Gene Delivery and RNAi Applications“. Viruses 7, Nr. 4 (22.04.2015): 2099–125. http://dx.doi.org/10.3390/v7042099.
Der volle Inhalt der QuelleSuda, Takeshi, und Dexi Liu. „Hydrodynamic Gene Delivery: Its Principles and Applications“. Molecular Therapy 15, Nr. 12 (Dezember 2007): 2063–69. http://dx.doi.org/10.1038/sj.mt.6300314.
Der volle Inhalt der QuelleYin, Feng, Bobo Gu, Yining Lin, Nishtha Panwar, Swee Chuan Tjin, Junle Qu, Shu Ping Lau und Ken-Tye Yong. „Functionalized 2D nanomaterials for gene delivery applications“. Coordination Chemistry Reviews 347 (September 2017): 77–97. http://dx.doi.org/10.1016/j.ccr.2017.06.024.
Der volle Inhalt der QuelleRabiee, Navid, Shokooh Ahmadvand, Sepideh Ahmadi, Yousef Fatahi, Rassoul Dinarvand, Mojtaba Bagherzadeh, Mohammad Rabiee, Mohammadreza Tahriri, Lobat Tayebi und Michael R. Hamblin. „Carbosilane dendrimers: Drug and gene delivery applications“. Journal of Drug Delivery Science and Technology 59 (Oktober 2020): 101879. http://dx.doi.org/10.1016/j.jddst.2020.101879.
Der volle Inhalt der QuelleWich, Peter R., und Jean M. J. Fréchet. „Degradable Dextran Particles for Gene Delivery Applications“. Australian Journal of Chemistry 65, Nr. 1 (2012): 15. http://dx.doi.org/10.1071/ch11370.
Der volle Inhalt der QuelleKafshdooz, Taiebeh, Leila Kafshdooz, Abolfazl Akbarzadeh, Younes Hanifehpour und Sang Woo Joo. „Applications of nanoparticle systems in gene delivery and gene therapy“. Artificial Cells, Nanomedicine, and Biotechnology 44, Nr. 2 (03.11.2014): 581–87. http://dx.doi.org/10.3109/21691401.2014.971805.
Der volle Inhalt der QuelleContin, Mario, Cybele Garcia, Cecilia Dobrecky, Silvia Lucangioli und Norma D’Accorso. „Advances in drug delivery, gene delivery and therapeutic agents based on dendritic materials“. Future Medicinal Chemistry 11, Nr. 14 (Juli 2019): 1791–810. http://dx.doi.org/10.4155/fmc-2018-0452.
Der volle Inhalt der QuelleDissertationen zum Thema "GENE DELIVERY APPLICATIONS"
Twaites, Beverley Ruth. „Polymer-biopolymer interactions : applications in gene delivery“. Thesis, University of Portsmouth, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402281.
Der volle Inhalt der QuelleShaw, Paul Andrew. „Improving gene delivery for gene therapy and DNA vaccination applications“. Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614094.
Der volle Inhalt der QuelleCifuentes, Rius Anna. „Tailoring Carbon Nanotubes Properties for Gene Delivery Applications“. Doctoral thesis, Universitat Ramon Llull, 2013. http://hdl.handle.net/10803/127706.
Der volle Inhalt der QuelleLa terapia génica se está convirtiendo en una técnica innovadora para curar enfermedades mediante la inserción de genes dentro de las células y órganos de un individuo. El reto recae en la liberación eficiente y segura de un acido nucleico terapéutico a los órganos objectivo. De todos los vectores sintéticos desarrollados recientemente, los nanotubos de carbono son una elección interesante que ya ha demostrado prometer considerablemente como sistema de liberación gracias a su proporción anchura-altura y su capacidad de traspasar la membrana celular. El problema que surge es su limitada solubilización i la agregación espontanea in vivo. Con el objetivo de desarrollar nuevos diseños basados en nanotubos de carbono para la formación de complejos capaces te transfectar ADN a las células, con un buen registro de biocompatibilidad y viabilidad celular, se han desarrollado diferentes estrategias. En primer lugar, se ha optimizado la funcionalización covalente de los nanotubos por medio de técnicas de plasma. Este tipo de modificación permite conseguir tanto superficies altamente reactivas capaces de unir ADN a traves de una molécula enlazante, como cargadas positivamente que permiten el envoltorio del acido nucleico por interacción electrostática. En segundo lugar, se han evaluado la dispersión de nanotubos de medidas diferentes por mediado de un agente estabilizante que incluye un surfactante un polímero amfifílico y proteínas. Esta naturaleza química de la superficie del nanotubo, junto con otras propiedades físicas como su longitud o diámetro, tiene un efecto directo en la dispersibilidad, citotoxicidad y biodistribución de estos sitemas. El uso de proteínas para funcionalizar nanopartículas es alentador ya que forma la corona de proteínas en su superficie. Dichos compuestos muestran una elevada capacidad de cargar ADN y permiten la regulación de su liberación mediante la manipulación de la composición de la corona.
Gene therapy has become an increasing innovative technique to treat disease by the insertion of genes into individual’s cells and tissues. The challenge is to efficiently and safely deliver the therapeutic nucleic acid into the target cells and organs. Among the synthetic vectors recently developed, carbon nanotubes are an interesting choice as they have already demonstrated considerable promise as delivery systems due to their high aspect ratio and their capacity to translocate the cell membrane. The problem that arises is their limited solubilization and spontaneous aggregation in vivo. Aiming to engineer new carbon nanotube-based designs for the formation of complexes able to transfect DNA/RNA to cells with a good track of biocompatibility and cell viability, different strategies have been developed. Firstly, the covalent functionalization of carbon nanotubes by plasma techniques has been optimized. This type of modification allows to either achieving highly reactive surfaces able to covalently bind DNA towards a chemical linker or a positively charged nanotube surface enabling the wrapping of the nucleic acid by electrostatic interaction. Secondly, the dispersion of the differently-sized carbon nanotubes by means of a stabilizing agent including a surfactant, an amphiphilic polymer and proteins has been assessed. The chemical nature of the modifying moieties on the carbon nanotube, alongside to other physical properties such as length or diameter, has a direct effect on the dispersibility, cytotoxicity and biodistribution of these systems. The use of proteins in the nanoparticle functionalization is encouraging due to the formation of the protein corona on its surface. Such complex exhibits high DNA load capacities and allows a tunable payload release by manipulating the corona composition
Uthe, Peter Benjamin Ashby Valerie. „The development of polycationic materials for gene delivery applications“. Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2010. http://dc.lib.unc.edu/u?/etd,2917.
Der volle Inhalt der QuelleTitle from electronic title page (viewed Jun. 23, 2010). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry." Discipline: Chemistry; Department/School: Chemistry.
TURCHIANO, GIANDOMENICO. „Defining an innovative and safe non-viral gene delivery system: perspective analysis for gene therapy applications“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/43579.
Der volle Inhalt der QuelleLaManna, Caroline Marie. „Synthesis, characterization, and evaluation of photo-active amphiphiles for gene delivery applications“. Thesis, Boston University, 2013. https://hdl.handle.net/2144/12803.
Der volle Inhalt der QuelleGene therapy has the potential to alter the landscape of medical therapeutic techniques by offering a means of introducing or knocking out genes to treat a number of diseases. Both viral and nonviral vectors are currently being utilized in gene therapy clinical trials. To overcome the obstacles in the cellular uptake and transfection pathways which impede nonviral gene delivery, novel lipids, polymers, and dendrimers are being engineered. Cationic lipid vectors have been widely characterized as gene delivery tools as they electrostatically interact with the anionic nucleic acid backbone to form a supramolecular structure (lipoplex). This complex allows the nucleic acid to be protected from enzymatic degradation during transport and interacts with the cell membrane to facilitate internalization by endocytosis. A limitation of current systems is a lack of mechanism for release of the nucleic acid, which is an integral step toward transcription and translation. The use of a charge-reversal or charge-switching amphiphile has been previously described by which the amphiphile initially has a net positive charge and is rendered negatively charged upon enzymatic removal of a terminal ester group. In order to further improve the transfection efficacy of cationic lipids and to impart an externally controlled release mechanism, we have developed a library of novel photo-active chargereversal lipids which can be triggered by ultraviolet (UV) light. In this work, we describe the synthesis and characterization of photo-active lipids for binding and releasing deoxyribonucleic acid (DNA) and evaluate the cellular uptake kinetics and transfection efficiency in vitro. The binding, release, and cellular uptake behaviors of lipoplexes were found to be dependent on lipid composition and resulting supramolecular structures. The transfection efficiency of the photo-active lipoplexes was further affected by variables associated with cellular incubation and UV exposure. Continued development of controlled release gene delivery vectors, including photoactive lipids, will enhance the understanding and utility of gene therapy by providing spatiotemporal control of the process.
Narayanasamy, Kaarjel Kauslya. „Preparation and evaluation of polymer coated magnetic nanoparticles for applications in gene delivery“. Thesis, Keele University, 2018. http://eprints.keele.ac.uk/5002/.
Der volle Inhalt der QuelleNelson, Ashley M. „Design of Functional Polyesters for Electronic and Biological Applications“. Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/74914.
Der volle Inhalt der QuellePh. D.
Allen, Michael H. Jr. „Imidazole-Containing Polymerized Ionic Liquids for Emerging Applications: From Gene Delivery to Thermoplastic Elastomers“. Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/49593.
Der volle Inhalt der QuellePh. D.
Perouzel, Eric. „Synthesis formulation and applications of new stabilisation agents for liposome based gene delivery system“. Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271482.
Der volle Inhalt der QuelleBücher zum Thema "GENE DELIVERY APPLICATIONS"
M, Amiji Mansoor, Hrsg. Polymeric gene delivery: Principles and applications. Boca Raton, Fla: CRC Press, 2005.
Den vollen Inhalt der Quelle findenTwaites, Beverley Ruth. Polymer-biopolymer interactions: Applications in gene delivery. Portsmouth: University of Portsmouth, School of Pharmacy and Biomedical Sciences, 2004.
Den vollen Inhalt der Quelle findenD, Lasic D., und Papahadjopoulos Demetrios, Hrsg. Medical applications of liposomes. Amsterdam: Elsevier, 1998.
Den vollen Inhalt der Quelle findenBremner, K. Helen. Application of nuclear localization sequences to non-viral gene delivery systems. Birmingham: University of Birmingham, 2002.
Den vollen Inhalt der Quelle findenCarlisle, Robert. The application of adenovirus transduction mechanisms to enhance the activity of synthetic gene delivery systems. Birmingham: University of Birmingham, 2002.
Den vollen Inhalt der Quelle findenZimmer, Vanessa. Gene Delivery: Methods and Applications. Nova Science Publishers, Incorporated, 2019.
Den vollen Inhalt der Quelle findenGene Delivery: Methods and Applications. Nova Science Publishers, Incorporated, 2019.
Den vollen Inhalt der Quelle findenAmiji, Mansoor M. Polymeric Gene Delivery: Principles and Applications. CRC, 2004.
Den vollen Inhalt der Quelle findenAmiji, Mansoor M. Polymeric Gene Delivery: Principles and Applications. Taylor & Francis Group, 2004.
Den vollen Inhalt der Quelle findenAmiji, Mansoor M. Polymeric Gene Delivery: Principles and Applications. Taylor & Francis Group, 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "GENE DELIVERY APPLICATIONS"
Amponsah, Seth Kwabena, Ismaila Adams und Kwasi Agyei Bugyei. „Clinical Applications of siRNA“. In Gene Delivery Systems, 65–76. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186069-4.
Der volle Inhalt der QuelleTrimal, Kavita, und Kalpana Joshi. „COVID-19 Vaccine Development and Applications“. In Gene Delivery Systems, 197–221. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186069-12.
Der volle Inhalt der QuelleBarua, Sonia, und Yashwant Pathak. „siRNA Delivery for Therapeutic Applications Using Nanoparticles“. In Gene Delivery Systems, 103–13. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186083-8.
Der volle Inhalt der QuelleFaldu, Khushboo, Sakshi Gurbani und Jigna Shah. „Clinical Applications of Gene Therapy for Immuno-Deficiencies“. In Gene Delivery Systems, 195–206. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186083-14.
Der volle Inhalt der QuellePandey, Prachi, Jayvadan Patel und Samarth Kumar. „CRISPER Gene Therapy Recent Trends and Clinical Applications“. In Gene Delivery Systems, 179–94. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186083-13.
Der volle Inhalt der QuellePatel, Kshama, Preetam Dasika und Yashwant V. Pathak. „The Current State of Non-Viral Vector–Based mRNA Medicine Using Various Nanotechnology Applications“. In Gene Delivery Systems, 89–103. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186069-6.
Der volle Inhalt der QuelleSanthakumaran, Latha M., Alex Chen, C. K. S. Pillai, Thresia Thomas, Huixin He und T. J. Thomas. „Nanotechnology in Nonviral Gene Delivery“. In Nanofabrication Towards Biomedical Applications, 251–87. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603476.ch10.
Der volle Inhalt der QuelleHalley, Patrick D., Christopher R. Lucas, Nikša Roki, Nicholas J. Vantangoli, Kurtis P. Chenoweth und Carlos E. Castro. „DNA Origami Nanodevices for Therapeutic Delivery Applications“. In Biotechnologies for Gene Therapy, 161–94. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93333-3_8.
Der volle Inhalt der QuelleŠebestík, Jaroslav, Milan Reiniš und Jan Ježek. „Dendrimers in Gene Delivery“. In Biomedical Applications of Peptide-, Glyco- and Glycopeptide Dendrimers, and Analogous Dendrimeric Structures, 141–47. Vienna: Springer Vienna, 2012. http://dx.doi.org/10.1007/978-3-7091-1206-9_14.
Der volle Inhalt der QuelleDev Jayant, Rahul, Abhijeet Joshi, Ajeet Kaushik, Sneham Tiwari, Rashmi Chaudhari, Rohit Srivastava und Madhavan Nair. „Chapter 8. Nanogels for Gene Delivery“. In Nanogels for Biomedical Applications, 128–42. Cambridge: Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781788010481-00128.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "GENE DELIVERY APPLICATIONS"
Dandia, Hiren, Snehal Valvi, Rahul Thorat, Arvind Ingle, Abhijit De, Shubhada Chiplunkar und Prakriti Tayalia. „Scaffold Based Gene Delivery for Immunotherapeutic Applications“. In National Research Scholars' Meet 2021 - Abstracts. Thieme Medical and Scientific Publishers Pvt. Ltd., 2022. http://dx.doi.org/10.1055/s-0042-1755513.
Der volle Inhalt der QuelleFlick, Eva, Wenzhong Li, Jonas Norpoth, Christian Jooss, Gustav Steinhoff und Hans H. Gatzen. „Characterization of a Magnetic Microactuator for Manipulating Nanoparticles in Gene Delivery Applications“. In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13025.
Der volle Inhalt der QuelleOlton, Dana, Dong Hyun Lee, Charles Sfeir und Prashant N. Kumta. „Novel Nanostructured Calcium Phosphate Based Delivery Systems for Non-Viral Gene Delivery“. In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176286.
Der volle Inhalt der QuelleWeibing Lu, Hilal Gul, Peng Xu, Woon T. Ang, James Xing, Jian Zhang und Jie Chen. „A novel gene delivery system using magnetic nanodarts“. In 2009 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA) Formerly known as LSSA and. IEEE, 2009. http://dx.doi.org/10.1109/lissa.2009.4906738.
Der volle Inhalt der QuelleJones, Frank R., Elizabeth S. Gabitzsch und Joseph P. Balint. „The Ad5 [E1-, E2b-]-based vector: a new and versatile gene delivery platform“. In SPIE Sensing Technology + Applications, herausgegeben von Šárka O. Southern. SPIE, 2015. http://dx.doi.org/10.1117/12.2183244.
Der volle Inhalt der QuelleWong, Peter, Michael A. Choi, Hilal Gul-Uludag, Woon T. Ang, Peng Xu, James Xing und Jie Chen. „Ultrasound-mediated gene delivery into hard-to-transfect KG-1 cells“. In 2011 IEEE/NIH 5th Life Science Systems and Applications Workshop (LiSSA). IEEE, 2011. http://dx.doi.org/10.1109/lissa.2011.5754179.
Der volle Inhalt der QuelleSerša, Gregor. „CLINICAL APPLICATIONS OF ELECTROCHEMOTHERAPY“. In Symposium with International Participation HEART AND … Akademija nauka i umjetnosti Bosne i Hercegovine, 2019. http://dx.doi.org/10.5644/pi2019.181.01.
Der volle Inhalt der QuelleBrown, Paige K., Ammar T. Qureshi, Daniel J. Hayes und W. Todd Monroe. „Targeted Gene Silencing With Light and a Silver Nanoparticle Antisense Delivery System“. In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53647.
Der volle Inhalt der QuelleVlaskou, Dialechti, Pallab Pradhan, Christian Bergemann, Alexander L. Klibanov, Karin Hensel, Georg Schmitz, Christian Plank et al. „Magnetic Microbubbles: Magnetically Targeted and Ultrasound-Triggered Vectors for Gene Delivery in Vitro“. In 8TH INTERNATIONAL CONFERENCE ON THE SCIENTIFIC AND CLINICAL APPLICATIONS OF MAGNETIC CARRIERS. AIP, 2010. http://dx.doi.org/10.1063/1.3530059.
Der volle Inhalt der QuelleDelyagina, Evgenya, Wenzhong Li, Anna Schade, Anna-L. Kuhlo, Nan Ma, Gustav Steinhoff, Urs Häfeli, Wolfgang Schütt und Maciej Zborowski. „Low Molecular Weight Polyethyleneimine Conjugated to Magnetic Nanoparticles as a Vector for Gene Delivery“. In 8TH INTERNATIONAL CONFERENCE ON THE SCIENTIFIC AND CLINICAL APPLICATIONS OF MAGNETIC CARRIERS. AIP, 2010. http://dx.doi.org/10.1063/1.3530058.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "GENE DELIVERY APPLICATIONS"
Radu, Daniela Rodica. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection. Office of Scientific and Technical Information (OSTI), Januar 2004. http://dx.doi.org/10.2172/837277.
Der volle Inhalt der QuelleHackett, Kevin, Shlomo Rottem, David L. Williamson und Meir Klein. Spiroplasmas as Biological Control Agents of Insect Pests. United States Department of Agriculture, Juli 1995. http://dx.doi.org/10.32747/1995.7613017.bard.
Der volle Inhalt der Quelle