Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „GENERATING CIRCUITS“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "GENERATING CIRCUITS" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "GENERATING CIRCUITS"
Materzok, Marek. „Generating circuits with generators“. Proceedings of the ACM on Programming Languages 6, ICFP (29.08.2022): 52–79. http://dx.doi.org/10.1145/3549821.
Der volle Inhalt der QuelleBriggman, K. L., und W. B. Kristan. „Multifunctional Pattern-Generating Circuits“. Annual Review of Neuroscience 31, Nr. 1 (Juli 2008): 271–94. http://dx.doi.org/10.1146/annurev.neuro.31.060407.125552.
Der volle Inhalt der QuelleBrodovskaya, Anastasia, und Jaideep Kapur. „Circuits generating secondarily generalized seizures“. Epilepsy & Behavior 101 (Dezember 2019): 106474. http://dx.doi.org/10.1016/j.yebeh.2019.106474.
Der volle Inhalt der QuelleKosarev, Boris. „FERRORESONANT PROCESSES IN POWER SUPPLY SYSTEMS WITH DISTRIBUTED GENERATION“. Electrical and data processing facilities and systems 18, Nr. 3-4 (2022): 56–64. http://dx.doi.org/10.17122/1999-5458-2022-18-3-4-56-64.
Der volle Inhalt der QuelleSOLIMAN, AHMED M. „GENERATION OF THIRD-ORDER QUADRATURE OSCILLATOR CIRCUITS USING NAM EXPANSION“. Journal of Circuits, Systems and Computers 22, Nr. 07 (August 2013): 1350060. http://dx.doi.org/10.1142/s0218126613500606.
Der volle Inhalt der QuelleGÜNAY, ENIS, und MUSTAFA ALÇI. „n-DOUBLE SCROLLS IN SC-CNN CIRCUIT VIA DIODE-BASED PWL FUNCTION“. International Journal of Bifurcation and Chaos 16, Nr. 04 (April 2006): 1023–33. http://dx.doi.org/10.1142/s0218127406015271.
Der volle Inhalt der QuelleWeikle, R. M., T. W. Crowe und E. L. Kollberg. „Multiplier and Harmonic Generator Technologies for Terahertz Applications“. International Journal of High Speed Electronics and Systems 13, Nr. 02 (Juni 2003): 429–56. http://dx.doi.org/10.1142/s012915640300179x.
Der volle Inhalt der QuelleKim, Junyeong, und Jin Jang. „P‐2: Narrow Bezel Gate Driver Generating Positive Pulse for AMOLED Display Using LTPO Technology with Depletion Mode Oxide TFTs“. SID Symposium Digest of Technical Papers 54, Nr. 1 (Juni 2023): 1782–85. http://dx.doi.org/10.1002/sdtp.16950.
Der volle Inhalt der QuelleCAFAGNA, DONATO, und GIUSEPPE GRASSI. „NEW 3D-SCROLL ATTRACTORS IN HYPERCHAOTIC CHUA'S CIRCUITS FORMING A RING“. International Journal of Bifurcation and Chaos 13, Nr. 10 (Oktober 2003): 2889–903. http://dx.doi.org/10.1142/s0218127403008284.
Der volle Inhalt der QuelleZeng, Xian Tao, und Qian Hua Ren. „Power Generation System by Vehicle on the Downhill of Expressway“. Advanced Materials Research 724-725 (August 2013): 1361–65. http://dx.doi.org/10.4028/www.scientific.net/amr.724-725.1361.
Der volle Inhalt der QuelleDissertationen zum Thema "GENERATING CIRCUITS"
Sheikhbahaei, Shahriar. „Astroglial control of respiratory rhythm generating circuits“. Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/10037956/.
Der volle Inhalt der QuelleWang, Jianwei. „Generating, manipulating, distributing and analysing light's quantum states using integrated photonic circuits“. Thesis, University of Bristol, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.702227.
Der volle Inhalt der QuelleMcKnight, Walter Lee. „A meta system for generating software engineering environments /“. The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487260531958418.
Der volle Inhalt der QuelleFerraz, Rafael da Silva. „Dispositivo para medição de impedância em sistemas de aterramento elétricos em alta frequência“. Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/6615.
Der volle Inhalt der QuelleApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-12-16T16:57:34Z (GMT) No. of bitstreams: 2 Dissertação - Rafael da Silva Ferraz - 2016.pdf: 8992095 bytes, checksum: 11544acef63b20e945753d7b895bb5ae (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-12-16T16:57:34Z (GMT). No. of bitstreams: 2 Dissertação - Rafael da Silva Ferraz - 2016.pdf: 8992095 bytes, checksum: 11544acef63b20e945753d7b895bb5ae (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-11-04
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This work presents the project and the implementation of a device that is capable of measuring the electrical effects, especially the impedance, in grounding meshes when subjected to atmospherical discharges. An analysis on the influence of the atmospheric discharges in electrical protection systems is performed and also a comparison between current and voltage impulsive circuits. The device is built of electronic circuits controlled by a microcontroller, with the possibility of parameter adjusting for shaping the generated impulse wave. The device was conceived such that it can be used for tests of soil impedance measurement and for verification of the behavior of electrical grounding systems under high frequencies. The results are presented for tests in different types of systems and there was satisfactory performance for the developed equipment when compared with a commercial device
Este trabalho apresenta o projeto e a implementação do dispositivo capaz de medir os efeitos elétricos, em especial, as impedâncias, em malha de aterramento, sujeito a descargas atmosféricas. Analisa-se as influências das descargas atmosféricas nos sistemas de proteção elétricos e desenvolve-se análise comparativa dos circuitos impulsivos de corrente e de tensão. Constrói-se o dispositivo que consiste de circuitos eletrônicos controlados por microcontrolador, com possibilidade de ajuste de parâmetros da onda gerada. O dispositivo produzido é utilizado para medição da impedância do solo e verificação do comportamento de sistemas de aterramento elétrico em baixas e altas frequências. São apresentados os resultados dos testes em diferentes tipos de sistemas, demonstrando o satisfatório desempenho quando comparado com instrumento comercial.
Krishnamurthy, Smitha. „SOLAR AND FUEL CELL CIRCUIT MODELING, ANALYSIS AND INTEGRATIONS WITH POWER CONVERSION CIRCUITS FOR DISTRIBUTED GENERATION“. Master's thesis, University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3501.
Der volle Inhalt der QuelleM.S.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering MSEE
Bollinger, S. Wayne. „Hierarchical test generation for CMOS circuits“. Diss., This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-07282008-134708/.
Der volle Inhalt der QuelleLee, Kyung Tek. „Crosstalk fault test generation and hierarchical timing verification in VLSI digital circuits /“. Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Der volle Inhalt der QuelleLazzari, Cristiano. „Transistor level automatic generation of radiation-hardened circuits“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2007. http://hdl.handle.net/10183/15506.
Der volle Inhalt der QuelleDeep submicron (DSM) technologies have increased the challenges in circuit designs due to geometry shrinking, power supply reduction, frequency increasing and high logic density. The reliability of integrated circuits is significantly reduced as a consequence of the susceptibility to crosstalk and substrate coupling. In addition, radiation effects are also more significant because particles with low energy, without importance in older technologies, start to be a problem in DSM technologies. All these characteristics emphasize the need for new Electronic Design Automation (EDA) tools. One of the goals of this thesis is to develop EDA tools able to cope with these DSM challenges. This thesis is divided in two major contributions. The first contribution is related to the development of a new methodology able to generate optimized circuits in respect to timing and power consumption. A new design flow is proposed in which the circuit is optimized at transistor level. This methodology allows the optimization of every single transistor according to the capacitances associated to it. Different from the traditional standard cell approach, the layout is generated on demand after a transistor level optimization process. Results show an average 11% delay improvement and more than 30% power saving in comparison with the traditional design flow. The second contribution of this thesis is related with the development of techniques for radiation-hardened circuits. The Code Word State Preserving (CWSP) technique is used to apply timing redundancy into latches and flipflops. This technique presents low area overhead, but timing penalties are totally related with the glitch duration is being attenuated. Further, a new transistor sizing methodology for Single Event Transient (SET) attenuation is proposed. The sizing method is based on an analytic model. The model considers independently pull-up and pull-down blocks. Thus, only transistors directly related to the SET attenuation are sized. Results show smaller area, timing and power consumption overhead in comparison with TMR and CWSP techniques allowing the development of high frequency circuits, with lower area and power overhead.
Hutton, Michael D. „Characterization and parameterized generation of digital circuits“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0021/NQ27666.pdf.
Der volle Inhalt der QuelleVasudevan, Dilip Prasad. „Automatic test pattern generation for asynchronous circuits“. Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/7670.
Der volle Inhalt der QuelleBücher zum Thema "GENERATING CIRCUITS"
Martins, Ricardo M. F. Generating Analog IC Layouts with LAYGEN II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Den vollen Inhalt der Quelle findenGivon, Lev E. An Open Pipeline for Generating Executable Neural Circuits from Fruit Fly Brain Data. [New York, N.Y.?]: [publisher not identified], 2016.
Den vollen Inhalt der Quelle findenModel engineering in mixed-signal circuit design: A guide to generating accurate behavioral models in VHDL-AMS. Boston: Kluwer Academic Publishers, 2001.
Den vollen Inhalt der Quelle findenZeljko, Zilic, und SpringerLink (Online service), Hrsg. Generating Hardware Assertion Checkers: For Hardware Verification, Emulation, Post-Fabrication Debugging and On-Line Monitoring. Dordrecht: Springer Science + Business Media B.V, 2008.
Den vollen Inhalt der Quelle findenBobyr', Maksim, Vitaliy Titov und Vladimir Ivanov. Design of analog and digital devices. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1070341.
Der volle Inhalt der QuelleIEEE Power Engineering Society. Power Generation Committee., Hrsg. IEEE recommended practice for the design of safety-related DC auxiliary power systems for nuclear power generating stations. New York, NY, USA: Institute of Electrical and Electronics Engineers, 1985.
Den vollen Inhalt der Quelle findenLin, Chieh. Mixed-signal layout generation concepts. Boston: Kluwer Academic Publishers, 2003.
Den vollen Inhalt der Quelle findenLin, Chieh. Mixed-signal layout generation concepts. Boston, MA: Kluwer Academic Publishers, 2004.
Den vollen Inhalt der Quelle findenLampaert, Koen. Analog layout generation for performance and manufacturability. Boston: Kluwer Academic, 1999.
Den vollen Inhalt der Quelle findenDhiman, Rohit. Nanoelectronics for Next-Generation Integrated Circuits. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003155751.
Der volle Inhalt der QuelleBuchteile zum Thema "GENERATING CIRCUITS"
Mellergaard, Niels, und Jørgen Staunstrup. „Generating Proof Obligations for Circuits“. In Workshops in Computing, 185–200. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-3558-6_11.
Der volle Inhalt der QuelleTanaka, Takushi. „Generating explanations from electronic circuits“. In Lecture Notes in Computer Science, 739–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-64582-9_806.
Der volle Inhalt der QuelleSheeran, Mary. „Generating Fast Multipliers Using Clever Circuits“. In Formal Methods in Computer-Aided Design, 6–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30494-4_2.
Der volle Inhalt der QuelleStent, Gunther S. „Neural Circuits for Generating Rhythmic Movements“. In Self-Organizing Systems, 245–63. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-0883-6_14.
Der volle Inhalt der QuelleValiron, Benoît. „Generating Reversible Circuits from Higher-Order Functional Programs“. In Reversible Computation, 289–306. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40578-0_21.
Der volle Inhalt der QuelleLi, Zhiqiang, Jiajia Hu, Xi Wu, Juan Dai, Wei Zhang und Donghan Yang. „An Efficient Method for Generating Matrices of Quantum Logic Circuits“. In Lecture Notes in Computer Science, 142–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57884-8_13.
Der volle Inhalt der QuelleAli Taher, Murad Ahmed. „Algorithmic Method for Generating DC-DC Converter Circuits by Using Topological Matrix“. In Communications in Computer and Information Science, 714–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22603-8_62.
Der volle Inhalt der QuelleGoldberg, Eugene, und Panagiotis Manolios. „Generating High-Quality Tests for Boolean Circuits by Treating Tests as Proof Encoding“. In Tests and Proofs, 101–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13977-2_10.
Der volle Inhalt der QuelleSziray, József. „Test Generation for Short-Circuit Faults in Digital Circuits“. In Studies in Computational Intelligence, 313–19. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03206-1_21.
Der volle Inhalt der QuelleMaheshwari, Sudhanshu. „Waveform generation circuits“. In Analog Circuit Design using Current-Mode Techniques, 109–33. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003403111-7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "GENERATING CIRCUITS"
Gaber, Lamya, Aziza I. Hussein und Mohammed Moness. „Incremental Automatic Correction for Digital VLSI Circuits“. In 10th International Conference on Advances in Computing and Information Technology (ACITY 2020). AIRCC Publishing Corporation, 2020. http://dx.doi.org/10.5121/csit.2020.101508.
Der volle Inhalt der QuelleTabei, Kaku, und Toshinori Yamada. „On generating test sets for reversible circuits“. In Systems (ICCES). IEEE, 2009. http://dx.doi.org/10.1109/icces.2009.5383305.
Der volle Inhalt der QuelleDubrov, Denis, und Alexander Roshal. „Generating pipeline integrated circuits using C2HDL converter“. In 2013 11th East-West Design and Test Symposium (EWDTS). IEEE, 2013. http://dx.doi.org/10.1109/ewdts.2013.6673108.
Der volle Inhalt der QuelleKiselyov, Oleg, Kedar N. Swadi und Walid Taha. „A methodology for generating verified combinatorial circuits“. In the fourth ACM international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1017753.1017794.
Der volle Inhalt der QuelleMutlu, Mustafa Umut, Ümit Hakan Yildiz und Osman Akın. „Polymer nanofiber-carbon nanotube network generating circuits“. In Organic Photonic Materials and Devices XX, herausgegeben von Christopher E. Tabor, François Kajzar, Toshikuni Kaino und Yasuhiro Koike. SPIE, 2018. http://dx.doi.org/10.1117/12.2289085.
Der volle Inhalt der QuelleS, Riju, und Soni Meera G. V. „High Speed Built in Self-Test via Pattern Generation“. In The International Conference on scientific innovations in Science, Technology, and Management. International Journal of Advanced Trends in Engineering and Management, 2023. http://dx.doi.org/10.59544/lgqz5151/ngcesi23p122.
Der volle Inhalt der QuelleLee, David, und Jehoshua Bruck. „Generating probability distributions using multivalued stochastic relay circuits“. In 2011 IEEE International Symposium on Information Theory - ISIT. IEEE, 2011. http://dx.doi.org/10.1109/isit.2011.6034134.
Der volle Inhalt der QuelleHernandez-Araya, Deykel, Jorge Castro-Godinez, Muhammad Shafique und Jorg Henkel. „AUGER: A Tool for Generating Approximate Arithmetic Circuits“. In 2020 IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS). IEEE, 2020. http://dx.doi.org/10.1109/lascas45839.2020.9069045.
Der volle Inhalt der QuelleMoussalli, Roger, Bharat Sukhwani und Sameh Asaad. „FINPAGE: Generating high performance feed-specific parser circuits“. In 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2013. http://dx.doi.org/10.1109/globalsip.2013.6737095.
Der volle Inhalt der QuelleWeingarten, K. J., M. J. W. Rodwell, J. L. Freeman, S. K. Diamond und D. M. Bloom. „Electrooptic Sampling of GaAs Integrated Circuits“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/up.1986.ma2.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "GENERATING CIRCUITS"
Ghosh, Abhijit, Srinivas Devadas und A. R. Newton. Test Generation for Highly Sequential Circuits. Fort Belvoir, VA: Defense Technical Information Center, August 1989. http://dx.doi.org/10.21236/ada211932.
Der volle Inhalt der QuelleAuthor, Not Given. Advanced Gate Dielectric Materials for Next-Generation Integrated Circuits. Office of Scientific and Technical Information (OSTI), Oktober 2018. http://dx.doi.org/10.2172/1483866.
Der volle Inhalt der QuelleCardwell, Suma, John Smith und Douglas Crowder. AI-enhanced Codesign for Next-Generation Neuromorphic Circuits and Systems. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1889339.
Der volle Inhalt der QuelleBoppana, Vamsi, und W. Kent Fuchs. Dynamic Fault Collapsing and Diagnostic Test Pattern Generation for Sequential Circuits. Fort Belvoir, VA: Defense Technical Information Center, November 1998. http://dx.doi.org/10.21236/ada351548.
Der volle Inhalt der QuelleVawter, G. A., A. Mar, J. Zolper und V. Hietala. Photonic integrated circuit for all-optical millimeter-wave signal generation. Office of Scientific and Technical Information (OSTI), März 1997. http://dx.doi.org/10.2172/469141.
Der volle Inhalt der QuelleEshed, Yuval, und Sarah Hake. Exploring General and Specific Regulators of Phase Transitions for Crop Improvement. United States Department of Agriculture, November 2012. http://dx.doi.org/10.32747/2012.7699851.bard.
Der volle Inhalt der QuelleModeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant. Office of Scientific and Technical Information (OSTI), Dezember 2010. http://dx.doi.org/10.2172/1004237.
Der volle Inhalt der Quelle