Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Genetic algorithms. Multidisciplinary design optimization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Genetic algorithms. Multidisciplinary design optimization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Genetic algorithms. Multidisciplinary design optimization"
Farshadnia, Reza. „Genetic Algorithms in Optimization and Computer Aided Design“. Journal of Applied Sciences 1, Nr. 3 (15.06.2001): 289–94. http://dx.doi.org/10.3923/jas.2001.289.294.
Der volle Inhalt der QuelleKURAPATI, A., und S. AZARM. „IMMUNE NETWORK SIMULATION WITH MULTIOBJECTIVE GENETIC ALGORITHMS FOR MULTIDISCIPLINARY DESIGN OPTIMIZATION“. Engineering Optimization 33, Nr. 2 (Dezember 2000): 245–60. http://dx.doi.org/10.1080/03052150008940919.
Der volle Inhalt der QuelleZhang, Jing. „Multidisciplinary Fuzzy Optimization Design of Planar Linkage Mechanism“. Advanced Materials Research 211-212 (Februar 2011): 1016–20. http://dx.doi.org/10.4028/www.scientific.net/amr.211-212.1016.
Der volle Inhalt der QuelleHuang, Jingjing, Longxi Zheng und Qing Mei. „Design and Optimization Method of a Two-Disk Rotor System“. International Journal of Turbo & Jet-Engines 33, Nr. 1 (01.01.2016): 1–8. http://dx.doi.org/10.1515/tjj-2014-0033.
Der volle Inhalt der QuelleLam, Xuan-Binh. „Multidiscilinary design optimization for aircraft wing using response surface method, genetic algorithm, and simulated annealing“. Journal of Science and Technology in Civil Engineering (STCE) - NUCE 14, Nr. 1 (22.01.2020): 28–41. http://dx.doi.org/10.31814/stce.nuce2020-14(1)-03.
Der volle Inhalt der QuelleLiu, Yu, Hong Yun Yang und Guo Chao Wang. „Genetic Algorithm Based Multidisciplinary Design Optimization of MEMS Accelerometer“. Applied Mechanics and Materials 101-102 (September 2011): 530–33. http://dx.doi.org/10.4028/www.scientific.net/amm.101-102.530.
Der volle Inhalt der QuelleAdami, Amirhossein, Mahda Mortazavi und Mehran Nosratollahi. „Multi-modular design optimization and multidisciplinary design optimization“. International Journal of Intelligent Unmanned Systems 3, Nr. 2/3 (11.05.2015): 156–70. http://dx.doi.org/10.1108/ijius-01-2015-0001.
Der volle Inhalt der QuelleXiang, Xianbo, Caoyang Yu, He Xu und Stuart X. Zhu. „Optimization of Heterogeneous Container Loading Problem with Adaptive Genetic Algorithm“. Complexity 2018 (01.11.2018): 1–12. http://dx.doi.org/10.1155/2018/2024184.
Der volle Inhalt der QuelleVillanueva, Fredy Marcell, He Linshu und Xu Dajun. „Kick Solid Rocket Motor Multidisciplinary Design Optimization Using Genetic Algorithm“. Journal of Aerospace Technology and Management 5, Nr. 3 (27.08.2013): 293–304. http://dx.doi.org/10.5028/jatm.v5i3.225.
Der volle Inhalt der QuelleNosratollahi, M., M. Mortazavi, A. Adami und M. Hosseini. „Multidisciplinary design optimization of a reentry vehicle using genetic algorithm“. Aircraft Engineering and Aerospace Technology 82, Nr. 3 (18.05.2010): 194–203. http://dx.doi.org/10.1108/00022661011075928.
Der volle Inhalt der QuelleDissertationen zum Thema "Genetic algorithms. Multidisciplinary design optimization"
Zhou, Yao. „Study on genetic algorithm improvement and application“. Link to electronic thesis, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-050306-211907/.
Der volle Inhalt der QuelleDingwall, Austin Gregory. „Testing the impact of using cumulative data with genetic algorithms for the analysis of building energy performance and material cost“. Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45952.
Der volle Inhalt der QuelleKhalid, Adeel S. „Development and Implementation of Rotorcraft Preliminary Design Methodology using Multidisciplinary Design Optimization“. Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14013.
Der volle Inhalt der QuelleSheng, Lizeng. „Finite Element Analysis and Genetic Algorithm Optimization Design for the Actuator Placement on a Large Adaptive Structure“. Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/30184.
Der volle Inhalt der QuellePh. D.
Gagliano, Joseph R. „Orbital Constellation Design and Analysis Using Spherical Trigonometry and Genetic Algorithms: A Mission Level Design Tool for Single Point Coverage on Any Planet“. DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1877.
Der volle Inhalt der QuelleJúnior, Paulo Roberto Caixeta. „Otimização multidisciplinar em projeto de asas flexíveis“. Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/18/18135/tde-22122006-111540/.
Der volle Inhalt der QuelleThe aeronautical industry is always trying to speed up technological advances in order to survive in extremely competitive markets. In this scenario, the use of design tools to accelerate the development of new aircraft becomes essential. Current computational resources allow greater increase in the number of design tools to assist the work of aeronautical engineers. In essence, the design of an aircraft is a multidisciplinary task, which stimulates the development of computational tools that work with different areas at the same time. Among them, the multidisciplinary design optimization (MDO) can be distinguished, which combines optimization methods to mathematical models of distinct areas of a design to find compromise solutions. The present work introduces MDO and discourses on some possible applications of this methodology. The implementation of a MDO system for the design of flexible wings, considering dynamic aeroelasticity restrictions and the structural mass, was carried out. As goal, it is desired to find ideal flexional and torsional stiffness distributions of the wing structure, that maximize the critical flutter speed and minimize the structural mass. To do so, it was employed a structural dynamics model based on the finite element method, a nonstationary aerodynamic model based on the strip theory and Theodorsens two-dimensional solutions, a flutter prediction model based on the K method and a genetic algorithm (GA). Details on the model, restrictions applied and the way the models interact to each other through the optimization are presented. It is made an analysis for choosing the GA optimization parameters and then, the evaluation of two cases to verify the functionality of the implemented system. The results obtained illustrate an efficient methodology, capable of searching optimal solutions for proposed problems, that with the right adjustments can be of great value to accelerate the development of new aircraft.
Júnior, Paulo Roberto Caixeta. „Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelos“. Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/18/18148/tde-28092011-103532/.
Der volle Inhalt der QuelleThe Multidisciplinary Design Optimization, MDO, is an important and versatile design tool and its use is spreading out in several fields of engineering. The focus of this methodology is to put together disciplines involved with the design to work all their variables concomitantly, at an optimization environment to obtain better solutions. It is possible to use MDO in any stage of the design process, that is in the conceptual, preliminary or detailed design, as long as the numerical models are fitted to the needs of each of these stages. This work describes the development of a MDO code for the conceptual design of flexible aircraft wings, with restrictions regarding the phenomenon called flutter. As a tool for the designer at the conceptual stage, the numerical models must be fairly accurate and fast. The aim of this study is to analyze the use of metamodels for the flutter prediction of aircraft wings in the MDO code, instead of a conventional model itself, what may affect significantly the computational cost of the optimization. For this purpose, three different metamodeling techniques have been evaluated, representing two basic metamodel classes, that are, the interpolation and the approximation class. These classes are represented by the radial basis function interpolation method and the artificial neural networks method, respectively. The third method, which is considered as a hybrid of the other two, is called radial basis function neural networks and is an attempt of coupling the features of both in single code. Metamodels are prepared using an aeroelastic code based on finite element model coupled with linear aerodynamics. Results of the three metamodels performance are presented, from where one can note that the artificial neural network is best suited for flutter prediction. The MDO process is achieved using a non-dominance based multi-objective genetic algorithm, whose objectives are the maximization of critical flutter speed and minimization of structural mass. Two case studies are presented to evaluate the performance of the MDO code, revealing that overall optimization process actually performs the search for the Pareto frontier.
Hinds, Christopher Alan. „A PARETO-FRONTIER ANALYSIS OF PERFORMANCE TRENDS FOR SMALL REGIONAL COVERAGE LEO CONSTELLATION SYSTEMS“. DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1342.
Der volle Inhalt der QuelleAbdalla, Alvaro Martins. „OMPP para projeto conceitual de aeronaves, baseado em heurísticas evolucionárias e de tomadas de decisões“. Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/18/18148/tde-13012011-113940/.
Der volle Inhalt der QuelleThis work is concerned with the development of a methodology for multidisciplinary optimization of the aircraft conceptual design. The aircraft conceptual design optimization was based on the evolutionary simulation of the aircraft characteristics outlined by a QFD/Fuzzy arithmetic approach where the candidates in the Pareto front are selected within categories close to the target proposed. As a test case a military trainer aircraft was designed target to perform the proper transition from basic to advanced training. The methodology for conceptual aircraft design optimization implemented in this work consisted on the integration of techniques such statistical entropy, quality function deployment (QFD), arithmetic fuzzy and genetic algorithm (GA) to the weighted multidisciplinary design optimization (WMDO). This methodology proved to be objective and well balanced when compared with traditional design techniques.
Burger, Christoph Hartfield Roy J. „Propeller performance analys and multidisciplinary optimization using a genetic algorithm“. Auburn, Ala, 2007. http://repo.lib.auburn.edu/2007%20Fall%20Dissertations/Burger_Christoph_57.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Genetic algorithms. Multidisciplinary design optimization"
Oyama, Akira. Multiobjective optimization of rocket engine pumps using evolutionary algorithm. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Den vollen Inhalt der Quelle findenGen, Mitsuo. Genetic algorithms and engineering design. New York: Wiley, 1997.
Den vollen Inhalt der Quelle findenYu-Wang, Chen, Chen Min-Rong, Chen Peng (Optimizaton specialist) und Zeng Guo-Qiang, Hrsg. Extremal optimization: Fundamentals, algorithms, and applications. Boca Raton: Taylor & Francis, CRC Press, 2015.
Den vollen Inhalt der Quelle findenVasiljević, Darko. Classical and evolutionary algorithms in the optimization of optical systems. Boston: Kluwer Academic Publishers, 2002.
Den vollen Inhalt der Quelle findenAdeli, Hojjat. Cost optimization of structures: Fuzzy logic, genetic algorithms, and parallel computing. Chichester, England: Wiley, 2006.
Den vollen Inhalt der Quelle findenConstraint-handling in evolutionary optimization. Berlin: Springer, 2009.
Den vollen Inhalt der Quelle findenMehrzieloptimierung Betriebswirtschaftlicher Probleme Durch Evolutionare Algorithmen. Peter Lang Publishing, 2005.
Den vollen Inhalt der Quelle findenMeng-Sing, Liou, und NASA Glenn Research Center, Hrsg. Multiobjective optimization of rocket engine pumps using evolutionary algorithm. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Den vollen Inhalt der Quelle findenYahya, Rahmat-Samii, und Michielssen Eric, Hrsg. Electromagnetic optimization by genetic algorithms. New York: J. Wiley, 1999.
Den vollen Inhalt der Quelle findenRahmat-Samii, Yahya, und Eric Michielssen. Electromagnetic Optimization by Genetic Algorithms. Wiley & Sons, Incorporated, John, 2008.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Genetic algorithms. Multidisciplinary design optimization"
Hajela, P. „Strategies for Modeling, Approximation, and Decomposition in Genetic Algorithms Based Multidisciplinary Design“. In Emerging Methods for Multidisciplinary Optimization, 257–318. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-2756-8_6.
Der volle Inhalt der QuellePillai, Ajit C., Philipp R. Thies und Lars Johanning. „Development of a Multi-Objective Genetic Algorithm for the Design of Offshore Renewable Energy Systems“. In Advances in Structural and Multidisciplinary Optimization, 2013–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67988-4_149.
Der volle Inhalt der QuelleHajela, P., E. Lee und C. Y. Lin. „Genetic Algorithms in Structural Topology Optimization“. In Topology Design of Structures, 117–33. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1804-0_10.
Der volle Inhalt der QuelleLeupers, Rainer. „Genetic Algorithm Based DSP Code Optimization“. In Evolutionary Algorithms for Embedded System Design, 35–62. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-1035-2_2.
Der volle Inhalt der QuelleHajela, P., und E. Lee. „Genetic Algorithms in Topological Design of Grillage Structures“. In Discrete Structural Optimization, 30–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85095-0_4.
Der volle Inhalt der QuelleSefrioui, M., E. Whitney, J. Periaux und K. Srinivas. „Evolutionary Algorithms for Multi-Objective Design Optimization“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), 224–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44873-0_17.
Der volle Inhalt der QuelleDellino, G., P. Lino, C. Meloni und A. Rizzo. „Enhanced Evolutionary Algorithms for Multidisciplinary Design Optimization: A Control Engineering Perspective“. In Hybrid Evolutionary Algorithms, 39–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73297-6_3.
Der volle Inhalt der QuelleBlessing, Jeffrey. „Efficient Network Design using Heuristic and Genetic Algorithms“. In Telecommunications Optimization: Heuristic and Adaptive Techniques, 35–55. Chichester, UK: John Wiley & Sons, Ltd, 2001. http://dx.doi.org/10.1002/047084163x.ch3.
Der volle Inhalt der QuellePereira, C. M. N. A., R. Schirru und A. S. Martinez. „Genetic Algorithms Applied to Nuclear Reactor Design Optimization“. In Fuzzy Systems and Soft Computing in Nuclear Engineering, 315–34. Heidelberg: Physica-Verlag HD, 2000. http://dx.doi.org/10.1007/978-3-7908-1866-6_14.
Der volle Inhalt der QuelleSáez-Gutiérrez, F. L., F. J. F. Cañavate und A. Guerrero-González. „Review of Industrial Design Optimization by Genetic Algorithms“. In Advances on Mechanics, Design Engineering and Manufacturing II, 336–46. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12346-8_33.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Genetic algorithms. Multidisciplinary design optimization"
Perez, Ruben, Joon Chung und Kamran Behdinan. „Aircraft conceptual design using genetic algorithms“. In 8th Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-4938.
Der volle Inhalt der QuelleAnderson, Murray, und Glenn Gebert. „Using Pareto genetic algorithms for preliminary subsonic wing design“. In 6th Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-4023.
Der volle Inhalt der QuelleStelmack, Marc, Nari Nakashima und Stephen Batill. „Genetic algorithms for mixed discrete/continuous optimization in multidisciplinary design“. In 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-4771.
Der volle Inhalt der QuelleDoorly, D., J. Peiro und J. P. Oesterle. „Optimisation of aerodynamic and coupled aerodynamic-structural design using parallel Genetic Algorithms“. In 6th Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-4027.
Der volle Inhalt der QuelleDuvigneau, Regis, und Michel Visonneau. „Hybrid Genetic Algorithms and Neural Networks for Fast CFD-Based Design“. In 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-5465.
Der volle Inhalt der QuelleCrossley, William. „Genetic Algorithm approaches for multiobjective design of rotor systems“. In 6th Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-4025.
Der volle Inhalt der QuelleZhu, Z., und Y. Chan. „An engineering study of genetic algorithms oriented to geometric design applications“. In 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-4772.
Der volle Inhalt der QuelleHadim, Hamid A., und Tohru Suwa. „Integrated Thermomechanical Design and Optimization of BGA Packages Using Genetic Algorithm“. In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56512.
Der volle Inhalt der QuelleDyer, John, Roy Hartfield, Gerry Dozier und John Burkhalter. „Aerospace Design Optimization Using a Steady State Real-Coded Genetic Algorithm“. In 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5921.
Der volle Inhalt der QuelleYamakawa, Hiroshi, und Yuji Takagi. „Multidisciplinary optimization for topology, shape of structural systems and design of control systems using genetic algorithms“. In 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-4846.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Genetic algorithms. Multidisciplinary design optimization"
Ling, Hao. Application of Model-Based Signal Processing and Genetic Algorithms for Shipboard Antenna Design, Placement Optimization. Fort Belvoir, VA: Defense Technical Information Center, Januar 2002. http://dx.doi.org/10.21236/ada399555.
Der volle Inhalt der Quelle