Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Genetic modifier factors“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Genetic modifier factors" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Genetic modifier factors"
Ginsburg, David. „Genetic Modifiers of Thrombosis in Mice.“ Blood 114, Nr. 22 (20.11.2009): SCI—44—SCI—44. http://dx.doi.org/10.1182/blood.v114.22.sci-44.sci-44.
Der volle Inhalt der QuelleMésinèle, Julie, Manon Ruffin, Loïc Guillot und Harriet Corvol. „Modifier Factors of Cystic Fibrosis Phenotypes: A Focus on Modifier Genes“. International Journal of Molecular Sciences 23, Nr. 22 (17.11.2022): 14205. http://dx.doi.org/10.3390/ijms232214205.
Der volle Inhalt der QuelleButnariu, Lăcrămioara Ionela, Elena Țarcă, Elena Cojocaru, Cristina Rusu, Ștefana Maria Moisă, Maria-Magdalena Leon Constantin, Eusebiu Vlad Gorduza und Laura Mihaela Trandafir. „Genetic Modifying Factors of Cystic Fibrosis Phenotype: A Challenge for Modern Medicine“. Journal of Clinical Medicine 10, Nr. 24 (13.12.2021): 5821. http://dx.doi.org/10.3390/jcm10245821.
Der volle Inhalt der QuelleDavidson, Courtney E., Qian Li, Gary A. Churchill, Lucy R. Osborne und Heather E. McDermid. „Modifier locus for exencephaly in Cecr2 mutant mice is syntenic to the 10q25.3 region associated with neural tube defects in humans“. Physiological Genomics 31, Nr. 2 (Oktober 2007): 244–51. http://dx.doi.org/10.1152/physiolgenomics.00062.2007.
Der volle Inhalt der QuelleShcherbakova, N. V., A. B. Zhironkina, V. Yu Voinova, R. A. Ildarova und M. A. Shkolnikova. „Phenotypic variability and modifier variants in children with hereditary heart diseases“. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics) 66, Nr. 3 (01.07.2021): 12–19. http://dx.doi.org/10.21508/1027-4065-2021-66-3-12-19.
Der volle Inhalt der QuelleHyun, Cheol Hwan, Chae Young Yoon, He-Jin Lee und Seung-Jae Lee. „LRRK2 as a Potential Genetic Modifier of Synucleinopathies: Interlacing the Two Major Genetic Factors of Parkinson’s Disease“. Experimental Neurobiology 22, Nr. 4 (30.12.2013): 249–57. http://dx.doi.org/10.5607/en.2013.22.4.249.
Der volle Inhalt der QuelleAlcaraz, Wendy A., Edward Chen, Phoebe Valdes, Eunnie Kim, Yuan Hung Lo, Jennifer Vo und Bruce A. Hamilton. „Modifier genes and non-genetic factors reshape anatomical deficits in Zfp423-deficient mice“. Human Molecular Genetics 20, Nr. 19 (05.07.2011): 3822–30. http://dx.doi.org/10.1093/hmg/ddr300.
Der volle Inhalt der QuellePelucchi, Sara, Giulia Ravasi, Cristina Arosio, Mario Mauri, Rocco Piazza, Raffaella Mariani und Alberto Piperno. „HIF1A: A Putative Modifier of Hemochromatosis“. International Journal of Molecular Sciences 22, Nr. 3 (27.01.2021): 1245. http://dx.doi.org/10.3390/ijms22031245.
Der volle Inhalt der QuelleDurán, Anyelo, David A. Priestman, Macarena Las Las Heras, Boris Rebolledo-Jaramillo, Valeria Olguín, Juan F. Calderón, Silvana Zanlungo, Jaime Gutiérrez, Frances M. Platt und Andrés D. Klein. „A Mouse Systems Genetics Approach Reveals Common and Uncommon Genetic Modifiers of Hepatic Lysosomal Enzyme Activities and Glycosphingolipids“. International Journal of Molecular Sciences 24, Nr. 5 (03.03.2023): 4915. http://dx.doi.org/10.3390/ijms24054915.
Der volle Inhalt der QuelleTebbi, Cameron K. „Sickle Cell Disease, a Review“. Hemato 3, Nr. 2 (30.05.2022): 341–66. http://dx.doi.org/10.3390/hemato3020024.
Der volle Inhalt der QuelleDissertationen zum Thema "Genetic modifier factors"
Shen, Yuelei. „MHC Class I Antigen Presentation is Regulated by the SUMO-Conjugating Enzyme UBC9: a Dissertation“. eScholarship@UMMS, 2003. https://escholarship.umassmed.edu/gsbs_diss/111.
Der volle Inhalt der QuelleVossen, Carolina Y. „Genetic risk factors for venous thrombosis : key players or minor risk modifiers ? /“. [S.l. : s.n], 2005. http://catalogue.bnf.fr/ark:/12148/cb402235083.
Der volle Inhalt der QuellePennison, Michael James. „Constitutively Decreased Transforming Growth Factor Beta Receptor 1 (TGFBR1) Signaling Modifies Colorectal Cancer Predisposition“. Thesis, Northwestern University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3741319.
Der volle Inhalt der QuelleColorectal cancer (CRC) is the third most commonly diagnosed cancer and the third leading cause of cancer death in the United States. Twin cohort studies indicate that inherited susceptibility accounts for approximately 35% of all CRC cases, but only 5-6% of CRC cases can be attributed to known functional mutations. We were the first to identify a germline mutation in Transforming Growth Factor Beta Receptor 1 (TGFBR1) that is also somatically acquired in tumors, a 9 bp in frame deletion within exon 1 (rs11466445), which results in a receptor with decreased TGF-β signaling properties. The observed association between this hypomorphic variant and cancer risk led us to hypothesize that constitutively decreased TGF-β signaling may contribute to the development of CRC.
In this dissertation, we developed a novel mouse model of Tgfbr1 haploinsufficiency (Tgfbr1+/−) and found that Tgfbr1+/− mice were twice as likely as Tgfbr1+/+ mice to develop CRC. We subsequently identified two human haplotypes associated with constitutively decreased TGFBR1 expression and CRC risk and found that decreased TGFBR1 expression is strongly associated with three SNPs: rs7034462, rs11466445 and rs11568785. Further examination of TGFBR1 haplotype tagging SNPs suggests that the TGFBR1 rs7034462-TT is a novel moderate penetrance risk genotype, which has high penetrance among African Americans, the ethnic group with the highest risk for CRC. Our results provide strong support for the novel notion that rs7034462-TT is a potentially clinically relevant CRC susceptibility genotype that may identify individuals at high risk of dying from CRC.
Parodi, Livia. „Identification of genetic modifiers in Hereditary Spastic Paraplegias due to SPAST/SPG4 mutations Spastic paraplegia due to SPAST mutations is modified by the underlying mutation and sex Hereditary spastic paraplegia: More than an upper motor neuron disease“. Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS317.
Der volle Inhalt der QuelleHereditary Spastic Paraplegias (HSPs) are a group of rare, inherited, neurodegenerative disorders that arise following the progressive degeneration of the corticospinal tracts, leading to lower limbs spasticity, the disorder hallmark. HSPs are characterized by an extreme heterogeneity that encompasses both genetic and clinical features, extending to additional disorder’s features, such as age of onset and severity. This phenotypic variability is typically observed among HSP patients carrying pathogenic mutations in SPAST, the most frequently mutated HSP causative gene. After assembling a cohort of 842 SPAST-HSP patients, a combination of different Next Generation Sequencing approaches was used to dig deeper into the causes of the observed heterogeneity, especially focusing on the identification of age of onset genetic modifiers. Sequencing data resulting from Whole Genome Genotyping were used to perform both association and linkage analysis that, combined with RNA sequencing expression data, allowed to identify different candidate variants/genes, potentially acting as SPAST-HSP age of onset modifiers
Louis, Jeanne. „Syndrοme de Li-Fraumeni : apprοches fοnctiοnnelles visant à appréhender la variabilité génοtypique et phénοtypique“. Electronic Thesis or Diss., Normandie, 2025. http://www.theses.fr/2025NORMR002.
Der volle Inhalt der QuelleLi-Fraumeni Syndrome (LFS) predisposes carriers of pathogenic TP53 variants to a wide spectrum of cancers throughout life. The phenotypic variability of LFS complicates patient management and can be partly attributed to the type of TP53 variant, as well as the influence of genetic modifier factors. To evaluate these modifier factors, it is essential to develop suitable functional tests.The activity of p53 isoforms suggests that they may act as modifier factors in LFS. Consequently, we developed assays for analyzing alternative transcripts, as presented in the first part of this work. While our results demonstrated that these assays were not well-suited to addressing this specific hypothesis, they nevertheless led us to the discovery of a novel physiological transcript not previously described in the literature. This transcript was found to be increased in a patient carrying a variant located at the splice acceptor site of TP53’s last exon, revealing an alternative splicing event involving TP53’s final exon and an alternative terminal exon located more than 2 kb downstream.To facilitate the classification of TP53 variants, our laboratory evaluates p53’s transcriptional activity in the patient’s specific genetic context. However, this approach does not allow us to fully disentangle the potential influence of individual genetic modifier factors. Therefore, in the second part of this work, we developed a human-induced pluripotent stem cell model to study TP53 variants introduced by CRISPR-Cas9 within a standardized genetic background. Our findings highlight the importance of physiological TP53 expression, particularly for studying variants with lower penetrance compared to "hot-spot" variants. Additionally, we show that in-frame variants exert differential impacts on p53’s functional activity, depending on the protein domain in which they are located. The advantage of our model also lies in its heterozygosity for PEX4, into which we were able to insert a second variant, in this case, the p.(Pro47Ser) polymorphism, inserted in trans with a pathogenic variant. Our results highlight the importance of the genetic context in the analysis of TP53 variants. This thesis work emphasizes the necessity of studying p53 transcriptional activity in a physiological context, without overexpression, with the aim of improving our understanding of this syndrome and optimizing the management of LFS patients
Olson, Theodore. „Transcriptional Regulation of Neurogenic Atrophy-Induced Gene Expression by Muscle Ring Finger-1 and Myogenic Regulatory Factors“. UNF Digital Commons, 2014. http://digitalcommons.unf.edu/etd/495.
Der volle Inhalt der QuelleArnaud, Pauline. „Identification de nouveaux gènes et de facteurs de gravité dans les formes familiales d'anévrisme de l'aorte ascendante“. Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC098.
Der volle Inhalt der QuellePatients who present a Marfan syndrome (MFS) have different clinical features, affecting several systems, including the cardiovascular, the ocular and the skeletal systems. The phenotypic variability is high, between individuals from different families, and within families. Cardiovascular features, that is to say Thoracic Aortic Aneurysm (TAA), and aortic dissection, are life-threatening. MFS and familial forms of TAA are transmitted as autosomal dominant diseases. At least 29 genes have already been associated with TAA. Some of them encode extracellular matrix proteins, such as the fibrillin-1. TGF-βsignaling also has a key role in the physiopathology of these diseases. For some families, the causal molecular defect had not been identified, highlighting a part of missing heritability. Furthermore, the genetic architecture underlying the phenotypic variability is still unknown. The first objective was to identify new disease causing genes in familial forms of TAA. A WES strategy was applied to several families, leading to the identification of a new disease causing gene, the LOXgene. The contribution of the different genes to non syndromic forms of TAA was then evaluated.The second objective was to identify mechanisms and genetic factors that explain MFS severity. A study was focused on the FBN1 locus and lead to the identification of moderate forms associated to two hypomorphic alleles. We also noticed that some patients have two variants in two known disease causing genes, underlying a mechanism of severity linked to a double heterozygosity.Through the crossmapping of different genomic strategies, it was possible to identify 3 major modifiers loci and 6 putative modifiers loci. Some of them were located near genes encoding proteins involved in the BMP pathway, which is close to the TGF-β pathway. Significant differences in the expression of SMAD1, SMAD6 and MEF2C genes were observed in different aortic smooth muscle celllines from MFS patients. This highlight new regulation processes in the BMP pathway depending onthe type of the initial pathogenic variant. Finally, comparing human and murine experimental data, we found that common signaling pathways associated with muscle cell contractility are down regulated in MFS, identifying a new potential therapeutic target, the baclofen
Fruchon, Séverine. „Modulation de la surcharge en fer dans un modèle murin d'hémochromatose : mise en évidence de facteurs génétiques et études d'expression génique“. Toulouse 3, 2004. http://www.theses.fr/2004TOU30274.
Der volle Inhalt der QuelleType 1 genetic hemochromatosis is characterised by an iron overload in parenchyme organs. A mutation (C282Y) in the HFE gene is the cause of the disease which is very frequent in the populations of North West Europe origins. Recent epidemiological studies revealed an incomplete penetrance and a variable expression of the disease. Involvement of non genetic factors (age, nutrition, regular blood donations. . . ) and of genetic factors can explain this picture. To characterise the role of the genetic factors in hepatic iron loading, we have used the Hfe-/- mouse as a murine model of hereditary hemochromatosis. The comparative study of 4 consanguineous mouse strains (DBA/2, C57BL/6, CBA and 129/Sv) showed differences in the regulation of iron metabolism between strains. Hfe-/- mice with two different genetic backgrounds (C57BL/6 and DBA/2) showed differences on iron overload levels which are controlled by other genes modulating HFE gene. We showed that in these two Hfe-/- strains, the iron overload levels and the transcriptional regulations in duodenum are different. Screening the whole genome, four chromosomic regions with a significant LOD score of genetic linkage were identified. The mRNA expression was quantified for hepcidin and other molecules among the two strains of Hfe-/- mice. Though there was no significant differences in hepcidin 1 mRNA levels between the Hfe-/- and Hfe+/+ mice, our results showed that there was higher mRNA expression for hepcidin 1 than for hepcidin 2 in C57BL/6 mice and the opposite was observed in DBA/2 mice
Winbo, Annika. „Long QT syndrome in Sweden : founder effects and associated cardiac phenotypes“. Doctoral thesis, Umeå universitet, Pediatrik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-57724.
Der volle Inhalt der Quelle„Transgenic expression of human granulocyte colony-stimulating factor in rice“. 2005. http://library.cuhk.edu.hk/record=b5892380.
Der volle Inhalt der QuelleThesis (M.Phil.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (leaves 156-174).
Abstracts in English and Chinese.
Acknowledgements --- p.iii
Abstract --- p.v
摘要 --- p.vii
Table of Contents --- p.ix
List of Figures --- p.xiii
List of Tables --- p.xvi
List of Graphs --- p.xvii
List of Abbreviations --- p.xviii
Chapter Chapter 1 --- General Introduction --- p.1
Chapter Chapter 2 --- Literature Review --- p.3
Chapter 2.1 --- Human granulocyte colony-stimulating factor (hG-CSF) --- p.3
Chapter 2.1.1 --- Historical background --- p.3
Chapter 2.1.2 --- Physiological Roles --- p.5
Chapter 2.1.3 --- Molecular properties --- p.8
Chapter 2.1.4 --- Biochemical properties --- p.9
Chapter 2.1.5 --- Comparison to G-CSF of other species --- p.11
Chapter 2.1.6 --- Biological Activities --- p.12
Chapter 2.1.7 --- Clinical Applications --- p.14
Chapter 2.1.7.1 --- Clinical use in myelosuppressive chemotherapy and neutropenic fever --- p.14
Chapter 2.1.7.2 --- Clinical use in bone marrow transplantation (BMT) and peripheral blood progenitor cell (PBPC) transplantation --- p.14
Chapter 2.1.7.3 --- Clinical use in HIV infection --- p.16
Chapter 2.1.7.4 --- Clinical use in diabetes mellitus --- p.17
Chapter 2.1.7.5 --- Clinical use in severe chronic neutropenia --- p.18
Chapter 2.1.7.6 --- Future prospects --- p.18
Chapter 2.1.7.7 --- Dosages and adverse effects --- p.19
Chapter 2.1.8 --- Economic value --- p.20
Chapter 2.2 --- Plant as bioractor --- p.20
Chapter 2.2.1 --- Medical molecular farming --- p.20
Chapter 2.2.2 --- Commercial biopharmaceutical proteins --- p.25
Chapter 2.2.3 --- Transgenic plants producing hematopoietic growth factors --- p.25
Chapter 2.2.3.1 --- Granulocyte-macrophage colony-stimulating factor (GM-CSF) --- p.26
Chapter 2.2.3.2 --- Interleukin-2 (IL-2) --- p.28
Chapter 2.3 --- Rice as expression system --- p.29
Chapter 2.3.1 --- Characteristics --- p.29
Chapter 2.3.2 --- Advantages of using rice as bioreactor --- p.30
Chapter 2.3.3 --- Previous studies --- p.31
Chapter 2.3.4 --- Transformation method --- p.33
Chapter 2.3.5 --- Super-binary vector --- p.34
Chapter 2.4 --- Strategies for enhancing protein expression level --- p.36
Chapter 2.4.1 --- Vacuolar targeting --- p.36
Chapter 2.4.1.1 --- Protein targeting signals --- p.38
Chapter 2.4.1.2 --- Binding protein of 80kDa (BP-80) --- p.39
Chapter 2.4.1.3 --- a-Tonoplast intrinsic protein (α-TIP) --- p.39
Chapter 2.4.1.4 --- Receptor homology region-transmembrane domain-Ring H2 motif (RMR) --- p.40
Chapter 2.4.2 --- Fusion with glutelin in rice --- p.41
Chapter 2.5 --- Hypotheses and aims of this study --- p.43
Chapter Chapter 3 --- Materials and Methods --- p.45
Chapter 3.1 --- Introduction --- p.45
Chapter 3.2 --- Chemicals --- p.45
Chapter 3.3 --- Bacterial strains --- p.46
Chapter 3.4 --- Chimeric genes construction --- p.46
Chapter 3.4.1 --- Protein targeting constructs --- p.51
Chapter 3.4.2 --- Enterokinase site constructs --- p.60
Chapter 3.4.3 --- Glutein signal peptide constructs --- p.65
Chapter 3.4.4 --- Glutelin fusion constructs --- p.70
Chapter 3.4.5 --- Sequence fidelity of chimeric genes --- p.77
Chapter 3.4.6 --- Cloning of chimeric genes into rice super-binary vector --- p.77
Chapter 3.5 --- Rice transformation --- p.79
Chapter 3.5.1 --- Plant materials --- p.79
Chapter 3.5.2 --- Agrobacterium transformation --- p.79
Chapter 3.5.3 --- A grobacterium-mediated transformation of rice --- p.79
Chapter 3.6 --- Transgenic expression --- p.81
Chapter 3.6.1 --- Extraction of leaf genomic DNA --- p.81
Chapter 3.6.2 --- Synthesis of DIG-labeled double-stranded DNA probe --- p.82
Chapter 3.6.3 --- Southern blot analysis --- p.83
Chapter 3.6.4 --- Extraction of total RNA from immature rice seeds --- p.84
Chapter 3.6.5 --- Northern blot analysis --- p.85
Chapter 3.6.6 --- Protein extraction --- p.86
Chapter 3.6.7 --- Tricine SDS-PAGE --- p.86
Chapter 3.6.8 --- Western blot analysis --- p.87
Chapter 3.6.9 --- Enterokinase digestion of EK fusion proteins --- p.88
Chapter 3.7 --- Confocal immunoflorescence studies of rhG-CSF in rice grain --- p.89
Chapter 3.7.1 --- Preparation of sample sections --- p.89
Chapter 3.7.2 --- Double-labeling of fluorescence probes --- p.89
Chapter 3.7.3 --- Image collection --- p.90
Chapter 3.8 --- Functional analysis of rhG-CSF --- p.91
Chapter 3.8.1 --- Culture of NFS-60 cells --- p.91
Chapter 3.8.2 --- MTT cell proliferation assay --- p.92
Chapter 3.9 --- Bacterial expression of anti-hG-CSF --- p.93
Chapter 3.9.1 --- pET expression in E. coli --- p.93
Chapter 3.9.2 --- Purification of His-hG-CSF --- p.97
Chapter 3.9.3 --- Immunization of rabbits --- p.97
Chapter Chapter 4 --- Results --- p.99
Chapter 4.1 --- Construction of chimeric genes for rice transformation --- p.99
Chapter 4.2 --- "Rice transformation, selection and regeneration" --- p.103
Chapter 4.3 --- Southern blot analysis --- p.105
Chapter 4.4 --- Northern blot analysis --- p.109
Chapter 4.5 --- Western blot analysis --- p.114
Chapter 4.6 --- Enterokinase digestion of EK fusion proteins --- p.125
Chapter 4.7 --- Confocal immunofluorescence studies of rhG-CSF in transgenic rice grain --- p.128
Chapter 4.8 --- Functional analysis of rhG-CSF --- p.132
Chapter 4.9 --- Bacterial expression of anti-hG-CSF --- p.135
Chapter 4.9.1 --- Expression and purification of recombinant His-hG-CSF in E. coli --- p.135
Chapter 4.9.2 --- Titer and specificity of the anti-serum --- p.137
Chapter Chapter 5 --- Discussion --- p.139
Chapter 5.1 --- Introduction --- p.139
Chapter 5.2 --- Fusion of hG-CSF with protein sorting determinants --- p.141
Chapter 5.3 --- Fusion of hG-CSF with rice glutelin --- p.145
Chapter 5.4 --- Glutelin signal peptide --- p.146
Chapter 5.5 --- O-glycosylation --- p.148
Chapter 5.6 --- Enterokinase digestion --- p.148
Chapter 5.7 --- Expression level of rhG-CSF --- p.149
Chapter 5.8 --- Functional analysis of rhG-CSF --- p.151
Chapter 5.9 --- Future perspectives --- p.151
Chapter Chapter 6 --- Conclusion --- p.155
References --- p.156
Bücher zum Thema "Genetic modifier factors"
Leo n, Rosa, Ph. D., Galva n. Aurora und Ferna ndez Emilio, Hrsg. Transgenic microalgae as green cell factories. New York, N.Y: Springer Science+Business Media/Landes Bioscience, 2007.
Den vollen Inhalt der Quelle findenEithan, Galun, Hrsg. The manufacture of medical and health products by transgenic plants. London: Imperial College Press, 2001.
Den vollen Inhalt der Quelle findenPlant transcription factors: Methods and protocols. New York: Humana, 2011.
Den vollen Inhalt der Quelle findenTransgenic Microalgae As Green Cell Factories. Springer London, Limited, 2008.
Den vollen Inhalt der Quelle findenTransgenic Microalgae as Green Cell Factories. Springer, 2014.
Den vollen Inhalt der Quelle findenLeVine III, Harry. Genetic Engineering. 2. Aufl. ABC-CLIO, 2006. http://dx.doi.org/10.5040/9798400656170.
Der volle Inhalt der QuelleYang, Jin, Pei Han, Wei Li und Ching-Pin Chang. Epigenetics and post-transcriptional regulation of cardiovascular development. Herausgegeben von José Maria Pérez-Pomares, Robert G. Kelly, Maurice van den Hoff, José Luis de la Pompa, David Sedmera, Cristina Basso und Deborah Henderson. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198757269.003.0032.
Der volle Inhalt der QuelleBiopharmaceuticals in plants: Toward the next century of medicine. Boca Raton: Taylor & Francis, 2010.
Den vollen Inhalt der Quelle findenKwabi-Addo, Bernard, und Tia Laura Lindstrom. Cancer Causes and Controversies. ABC-CLIO, LLC, 2011. http://dx.doi.org/10.5040/9798400623189.
Der volle Inhalt der QuelleBuchteile zum Thema "Genetic modifier factors"
Spittau, Björn, Eleni Roussa, Klaus Unsicker und Kerstin Krieglstein. „Transforming Growth Factor-Beta Superfamily: Animal Models for Development and Disease“. In Genetically Modified Organisms and Genetic Engineering in Research and Therapy, 39–49. Basel: S. KARGER AG, 2012. http://dx.doi.org/10.1159/000339188.
Der volle Inhalt der QuelleGlatt, Stephen J., Stephen V. Faraone und Ming T. Tsuang. „How Does the Environment Influence Schizophrenia?“ In Schizophrenia. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198813774.003.0012.
Der volle Inhalt der QuelleRozen, Rima. „Genetic Risk Factors for Neural Tube Defects: Variants in Folate Metabolism“. In Neural Tube Defects, 176–84. Oxford University PressNew York, NY, 2005. http://dx.doi.org/10.1093/oso/9780195166033.003.0015.
Der volle Inhalt der QuelleShore, Angela C. „Pathogenesis of microvascular disease“. In Oxford Textbook of Endocrinology and Diabetes, 1920–24. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199235292.003.1506.
Der volle Inhalt der QuelleTaylor, Kathleen. „4. Risk factors“. In Dementia: A Very Short Introduction, 74–104. Oxford University Press, 2020. http://dx.doi.org/10.1093/actrade/9780198825784.003.0004.
Der volle Inhalt der QuellePanja, Amrita, Brahmarshi Das, Tuphan Kanti Dolai und Sujata Maiti Choudhury. „The Key Genetic Determinants Behind the Phenotypic Heterogeneity of HbE/β-thalassemia Patients and the Probable Management Strategy“. In Thalassemia Syndromes - New Insights and Transfusion Modalities [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.109999.
Der volle Inhalt der QuelleVelankar, Radhika, Gauri Nerkar, Mukta Nagpurkar und Kiran Jagtap. „Genetically Modified Crops: A Pivotal Endeavor in Biotechnology“. In Genetically Modified Organisms [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1005578.
Der volle Inhalt der Quelle„Genetic Principles“. In DNA Fingerprinting, herausgegeben von Lorne t. Kirby. Oxford University Press, 1993. http://dx.doi.org/10.1093/oso/9780716770015.003.0005.
Der volle Inhalt der QuelleThomas, Alison. „Further Mendelian Principles“. In Thrive in Genetics. Oxford University Press, 2013. http://dx.doi.org/10.1093/hesc/9780199694624.003.0003.
Der volle Inhalt der QuelleChen, Qiang. „Plants as Factories for the Production of Protein Biologics“. In Plants, Genes & Agriculture. Oxford University Press, 2017. http://dx.doi.org/10.1093/hesc/9781605356846.003.0022.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Genetic modifier factors"
Steffens Henrique, Alisson, Ricardo Martins Brasil Soares, Rudimar Luis Scaranto Dazzi und Rodrigo Lyra. „Genetic Algorithm in Survival Shooter Games NPCs“. In Computer on the Beach. Itajaí: Universidade do Vale do Itajaí, 2020. http://dx.doi.org/10.14210/cotb.v11n1.p413-418.
Der volle Inhalt der QuelleEinolander, Jarno, und Hannu Vanharanta. „Degree of Commitment Among Students at a Technological University – Testing a New Research Instrument“. In Applied Human Factors and Ergonomics Conference. AHFE International, 2020. http://dx.doi.org/10.54941/ahfe100379.
Der volle Inhalt der QuelleNagy, D. A., Lawrence J. Shadle, Rob Hovsapian, Manish Mohanpurkar und D. Tucker. „A New Method for Valuing Nontraditional Stakeholder Parameters in Novel Power Systems Analysis“. In ASME Power Applied R&D 2023. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/power2023-108956.
Der volle Inhalt der QuelleSanthanam, Sridhar. „A Method to Extract Interface Stress Intensity Factors Using Interlayers“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79651.
Der volle Inhalt der QuelleBárcena Pasamontes, Lucía, Fernando Gómez Torres, Daniel Zwick, Sebastian Schafhirt und Michael Muskulus. „Support Structure Optimization for Offshore Wind Turbines With a Genetic Algorithm“. In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-24252.
Der volle Inhalt der QuelleKaminski, Meghan, Andrew D'Hooge und Zackery Borton. „Design Parameter Impact of Wind-Averaged Drag Optimization“. In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2025. https://doi.org/10.4271/2025-01-8772.
Der volle Inhalt der QuelleGideon, Olugbenga, Thomas Ulrich, Roger Lew, Benjamin Barton und Zethnouneay Dubois. „Early-Stage Usability Testing of Thermal Power Dispatch Simulator Using Novice Operators“. In 15th International Conference on Applied Human Factors and Ergonomics (AHFE 2024). AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1005026.
Der volle Inhalt der QuelleLarsen, Glann R., Mark Metzger, Yitzak Blue und Kim Henson. „PHARMACOKINETICS OF GENETICALLY MODIFIED T-PA IN RAT“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644614.
Der volle Inhalt der QuelleBudiyanto, Agung, Erif Maha Nugraha Setyawan, Dwi Sunu Datrianto, Dony Nurcahya und Budi Pramono. „Application of Artificial Insemination (AI) Tool Based on Oestrus Automatic Detection to Improve Goat Pregnancy in Yogyakarta“. In 3rd International Conference on Community Engagement and Education for Sustainable Development. AIJR Publisher, 2023. http://dx.doi.org/10.21467/proceedings.151.3.
Der volle Inhalt der QuelleKorkmaz, Jessica, und Raymond Ghajar. „The Modified hybrid Multi-Objective Genetic Algorithm and Loss Sensitivity Factor for Optimal Siting and Sizing of PV-Based Distributed Generation in Distribution Networks“. In 2023 IEEE 4th International Multidisciplinary Conference on Engineering Technology (IMCET). IEEE, 2023. http://dx.doi.org/10.1109/imcet59736.2023.10368224.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Genetic modifier factors"
Crawford, Keith W. Genetic Susceptibility Factors in Aggressive Breast Cancer in African-American Women and the Effects of Carcinogens and Modifiers. Fort Belvoir, VA: Defense Technical Information Center, Mai 1998. http://dx.doi.org/10.21236/ada353792.
Der volle Inhalt der QuelleFluhr, Robert, und Volker Brendel. Harnessing the genetic diversity engendered by alternative gene splicing. United States Department of Agriculture, Dezember 2005. http://dx.doi.org/10.32747/2005.7696517.bard.
Der volle Inhalt der QuelleHanda, Avtar K., Yuval Eshdat, Avichai Perl, Bruce A. Watkins, Doron Holland und David Levy. Enhancing Quality Attributes of Potato and Tomato by Modifying and Controlling their Oxidative Stress Outcome. United States Department of Agriculture, Mai 2004. http://dx.doi.org/10.32747/2004.7586532.bard.
Der volle Inhalt der QuelleDelmer, Deborah, Nicholas Carpita und Abraham Marcus. Induced Plant Cell Wall Modifications: Use of Plant Cells with Altered Walls to Study Wall Structure, Growth and Potential for Genetic Modification. United States Department of Agriculture, Mai 1995. http://dx.doi.org/10.32747/1995.7613021.bard.
Der volle Inhalt der QuelleWideman, Jr., Robert F., Nicholas B. Anthony, Avigdor Cahaner, Alan Shlosberg, Michel Bellaiche und William B. Roush. Integrated Approach to Evaluating Inherited Predictors of Resistance to Pulmonary Hypertension Syndrome (Ascites) in Fast Growing Broiler Chickens. United States Department of Agriculture, Dezember 2000. http://dx.doi.org/10.32747/2000.7575287.bard.
Der volle Inhalt der QuelleChamovitz, Daniel, und Albrecht Von Arnim. Translational regulation and light signal transduction in plants: the link between eIF3 and the COP9 signalosome. United States Department of Agriculture, November 2006. http://dx.doi.org/10.32747/2006.7696515.bard.
Der volle Inhalt der QuelleOlszewski, Neil, und David Weiss. Role of Serine/Threonine O-GlcNAc Modifications in Signaling Networks. United States Department of Agriculture, September 2010. http://dx.doi.org/10.32747/2010.7696544.bard.
Der volle Inhalt der QuelleApplebaum, Shalom W., Lawrence I. Gilbert und Daniel Segal. Biochemical and Molecular Analysis of Juvenile Hormone Synthesis and its Regulation in the Mediterranean Fruit Fly (Ceratitis capitata). United States Department of Agriculture, 1995. http://dx.doi.org/10.32747/1995.7570564.bard.
Der volle Inhalt der QuelleBarash, Itamar, und Robert E. Rhoads. Translational Mechanisms that Govern Milk Protein Levels and Composition. United States Department of Agriculture, November 2004. http://dx.doi.org/10.32747/2004.7586474.bard.
Der volle Inhalt der QuelleGlazer, Itamar, Alice Churchill, Galina Gindin und Michael Samish. Genomic and Organismal Studies to Elucidate the Mechanisms of Infectivity of Entomopathogenic Fungi to Ticks. United States Department of Agriculture, Januar 2013. http://dx.doi.org/10.32747/2013.7593382.bard.
Der volle Inhalt der Quelle