Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Geometría y Topología“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Geometría y Topología" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Geometría y Topología"
Cervantes, Ismael. „La globalización del saber matemático“. Respuestas 2, Nr. 1 (18.06.2016): 16–17. http://dx.doi.org/10.22463/0122820x.565.
Der volle Inhalt der QuelleGómez Plata, Adrián Ricardo. „Un estrato normal de las matrices normales“. Ciencia e Ingeniería Neogranadina 15 (01.11.2005): 6–11. http://dx.doi.org/10.18359/rcin.1494.
Der volle Inhalt der QuelleVidal Costa, E., und E. de la Torre Fernández. „Enseñanza de la Topología y Geometría en los niveles elementales“. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas 2, Nr. 2 (25.10.2006): 111. http://dx.doi.org/10.5565/rev/ensciencias.5326.
Der volle Inhalt der QuelleFernandez-Vivancos González, Enrique. „Geometría de la transformación. La propuesta urbana de Leonardo da Vinci para Milán“. EGA. Revista de expresión gráfica arquitectónica 21, Nr. 27 (09.05.2016): 142. http://dx.doi.org/10.4995/ega.2016.4736.
Der volle Inhalt der QuelleToledo Julián, Moisés Samuel, Alex Molina Sotomayor und Napoleón Caro Tuesta. „Sobre dos Teoremas Combinatorios“. Pesquimat 24, Nr. 1 (30.06.2021): 80–90. http://dx.doi.org/10.15381/pesquimat.v24i1.19717.
Der volle Inhalt der QuelleMartínez Lozano, José Joaquín, Mawency Vergel Ortega und TC Sandra Liliana Zafra Tristancho. „Ambiente de aprendizaje lúdico de las matemáticas para niños de la segunda infancia“. Revista Logos Ciencia & Tecnología 7, Nr. 2 (30.06.2016): 17. http://dx.doi.org/10.22335/rlct.v7i2.234.
Der volle Inhalt der QuellePavón Palacio, J. J., J. A. Villarraga Ossa und D. F. Tobon Espinosa. „Influencia de los Parámetros Tribológicos en el Coeficiente de Fricción entre Polipropileno y Piel“. Ingeniería y Ciencia 10, Nr. 20 (Juli 2014): 139–60. http://dx.doi.org/10.17230/ingciencia.10.20.9.
Der volle Inhalt der QuelleVemuri, K. R., S. I. Oh und R. A. Miller. „Topology-based geometry representation to support geometric reasoning“. IEEE Transactions on Systems, Man, and Cybernetics 19, Nr. 2 (1989): 175–87. http://dx.doi.org/10.1109/21.31024.
Der volle Inhalt der QuelleBridson, Martin, Clara Löh und Thomas Schick. „Geometric Topology“. Oberwolfach Reports 12, Nr. 1 (2015): 187–233. http://dx.doi.org/10.4171/owr/2015/3.
Der volle Inhalt der QuelleChernavskii, A. V. „On the jubilee conference “Geometric Topology, Discrete Geometry and Set Theory”“. Proceedings of the Steklov Institute of Mathematics 252, Nr. 1 (Januar 2006): 1–3. http://dx.doi.org/10.1134/s0081543806010019.
Der volle Inhalt der QuelleDissertationen zum Thema "Geometría y Topología"
Albujer, Brotons Alma Luisa. „Geometría global de superficies espaciales en espacios producto lorentzianos“. Doctoral thesis, Universidad de Murcia, 2008. http://hdl.handle.net/10803/10968.
Der volle Inhalt der QuelleAlong this PhD thesis we study the global geometry of spacelike surfaces, and in particular maximal surfaces, in Lorentzian product spaces. Firstly, we generalize the Calabi-Bernstien theorem when considering maximal surfaces in a Lorentzian product. We also study some local problems, which a posteriori will have important global consequences. The Lorentzian products are part of the family of the generalized Robertson-Walker spaces. Also the steady state type spaces form a subfamily of such spaces. The equivalent surfaces to the maximal ones in a steady state type space are the spacelike surfaces with H=1. In this context, we give a uniqueness result for complete spacelike surfaces with constant mean curvature bounded from the infinity of a steady state type space. Finally, we consider spacelike surfaces with constant Gaussian curvature in Riemannian and Lorentzian product spaces. In this case, we obtain some Calabi-Bernstein type results when M is the sphere S2
Egúsquiza, Gallo Mery Enny. „Aspectos geométricos de la teoría de curvas algebraicas“. Master's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/12825.
Der volle Inhalt der QuelleTesis
Ballón, Bordo Álvaro José. „Estructuras métricas de contacto y polinomios de Brieskorn-Pham“. Master's thesis, Pontificia Universidad Católica del Perú, 2016. http://tesis.pucp.edu.pe/repositorio/handle/123456789/7486.
Der volle Inhalt der QuelleTesis
Zalaya, Baez Ricardo. „Escultura matemática: definición, antecedentes en la historia del arte, desarrollo, perspectivas de evolución y clasificación por conceptos matemáticos“. Doctoral thesis, Universitat Politècnica de València, 2008. http://hdl.handle.net/10251/2661.
Der volle Inhalt der QuelleZalaya Baez, R. (2005). Escultura matemática: definición, antecedentes en la historia del arte, desarrollo, perspectivas de evolución y clasificación por conceptos matemáticos [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/2661
Palancia
Herrero, Piñeyro Pedro José. „El anillo mínimo de un cuerpo convexo. Algunos problemas de optimización“. Doctoral thesis, Universidad de Murcia, 2007. http://hdl.handle.net/10803/10966.
Der volle Inhalt der QuelleThis thesis aims to deal with the optimization problems and how to obtain the optimal inequalities within the Convex Geometry. It aims to treat with the already known properties of the minimal annulus associated to a plane convex body; we are also to study some new properties that help us know the relationship between both of them. The geometrical inequalities existing between the minimal annulus of a convex body and the classical geometrical measures are studied in detail. These measures are the area, the perimeter, the circumradius, the inradius, the minimal width and the diameter, and we will obtain in each case the extremal sets. We will study in detail those properties relating the minimal annulus of a convex body with its circumradius first and its inradius later. We will consider as fixed the minimal annulus and the cicumradius, and the optimal inequalities that relate those measures with the remaining one will be represented by describing the extremal sets. Finally, we will do something similar but considering as fixed the minimal annulus and the inradius.
Paiva, Rui Eduardo Brasileiro. „Injetividade como um fenÃmeno de transversalidade em geometrias de curvatura negativa“. Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11171.
Der volle Inhalt der QuelleConselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
Nesta dissertaÃÃo abordamos o problema de injetividade de difeomorsmos locais em dimensÃo dois, do ponto de vista da geometria de curvatura negativa. O teorema principal fornece um conjunto de condiÃÃes sucientes para injetividade de um difeomorfismo local f : M1 → M2, entre superfÃcies de Hadamard, que se baseiam inteiramente em certas condiÃÃes de transversalidade simples de serem satisfeitas por folheaÃÃes defifinidas pelos horociclos associados a mÃtrica de curvatura nÃo positiva variÃvel em M1 e M2 , e o pull-back por f de tais folheaÃÃes. O Teorema fornece tambem uma definiÃÃo geomÃtrica para alguns dos resultados sobre a conjectura de estabilidade global assintÃtica, em particular, apresenta uma extensÃo parcial da condiÃÃo espectral para o caso de variedades de Hadamard.
In this work, we study the problem of injectivity of a local dieomorphism on dimension two of the point of view of the geometry of negative curvature. The main theorem provides a set of sucient conditions for injectivity of a local diffeomorphism f : M1 → M2 , between Hadamard surfaces, which depends on certain transversality conditions to be satisfied by simple foliations defined by horocycles associated to the metric with non positive curvature varying in M1 and M2 , and the pull-back in f of such foliations. This result gives a geometric definition for some of the results about the global asymptotic stability conjecture, in particular, it has a partial extension of the spectral condition for the case of Hadamard manifolds.
Greene, Michael Thomas. „Some results in geometric topology and geometry“. Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.397717.
Der volle Inhalt der QuellePereira, Hevans Vinicius. „Introdução à topologia cósmica“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/106943.
Der volle Inhalt der QuelleIn this work we study some aspects of geometry and topology of manifolds with the goal of applying such results with observational data to try to determine the tridimensional manifold that can serve as a model for the spatial part of the universe.
Santos, Débora Cristina Lopes dos [UNESP]. „Sobre o Teorema da Alfândega“. Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/124019.
Der volle Inhalt der QuelleNeste trabalho tratamos do Teorema da Alfândega e aplicações. Para o desenvolvimento deste estudo fez-se necessário explorar elementos da Topologia, entre estes destacamos Espaço Conexo. Além dos prerrequisitos para enunciar e demonstrar o Teorema da Alfândega, também estudamos o Teorema do Valor Intermediário e aplicações interessantes deste. Finalizamos o corpo desta dissertação elucidando duas aplicações do Teorema da Alfândega em dois contextos diferentes
In this dissertation we discuss the Theorem of Customs and its applications, among which we underline the theorem of intermediate value. Therefore, we had to remind some information such as the basic language of topology and connectivity, so we could reach our main objective, the of Customs Theorem. We intend to show the importance of this theorem that unfolds in many applications
Santos, Débora Cristina Lopes dos. „Sobre o Teorema da Alfândega /“. Rio Claro, 2014. http://hdl.handle.net/11449/124019.
Der volle Inhalt der QuelleBanca: Estaner Claro Romão
Banca: Suzinei Aparecida Siqueira Marconato
Resumo: Neste trabalho tratamos do Teorema da Alfândega e aplicações. Para o desenvolvimento deste estudo fez-se necessário explorar elementos da Topologia, entre estes destacamos Espaço Conexo. Além dos prerrequisitos para enunciar e demonstrar o Teorema da Alfândega, também estudamos o Teorema do Valor Intermediário e aplicações interessantes deste. Finalizamos o corpo desta dissertação elucidando duas aplicações do Teorema da Alfândega em dois contextos diferentes
Abstract: In this dissertation we discuss the Theorem of Customs and its applications, among which we underline the theorem of intermediate value. Therefore, we had to remind some information such as the basic language of topology and connectivity, so we could reach our main objective, the of Customs Theorem. We intend to show the importance of this theorem that unfolds in many applications
Mestre
Bücher zum Thema "Geometría y Topología"
Singer, I. M. Lecture notes on elementary topology and geometry. New Delhi: University of Bangalore Press, 1996.
Den vollen Inhalt der Quelle findenGordon, Cameron, Yoav Moriah und Bronislaw Wajnryb, Hrsg. Geometric Topology. Providence, Rhode Island: American Mathematical Society, 1994. http://dx.doi.org/10.1090/conm/164.
Der volle Inhalt der QuelleBloch, Ethan D. A first course in geometric topology and differential geometry. Boston: Birkhäuser, 1997.
Den vollen Inhalt der Quelle findenBloch, Ethan D. A First Course in Geometric Topology and Differential Geometry. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-0-8176-8122-7.
Der volle Inhalt der QuelleSernesi, Edoardo. Geometria 2. Torino: Bollati Boringhieri, 1994.
Den vollen Inhalt der Quelle findenBredon, Glen E. Topology and geometry. 2. Aufl. New York: Springer-Verlag, 1995.
Den vollen Inhalt der Quelle findenBredon, Glen E. Topology and Geometry. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4757-6848-0.
Der volle Inhalt der QuelleAlexander, James C., und John L. Harer. Geometry and Topology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0075212.
Der volle Inhalt der QuelleBuchteile zum Thema "Geometría y Topología"
Dolcher, Mario. „Alcuni Risultati Della Geometria Delle Trasformazioni Continue“. In Topologia, 99–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10898-3_5.
Der volle Inhalt der QuelleHilbert, David, und Stephan Cohn-Vossen. „Topologie“. In Anschauliche Geometrie, 253–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-19948-6_6.
Der volle Inhalt der QuelleGorski, Hans-Joachim, und Susanne Müller-Philipp. „Topologie“. In Leitfaden Geometrie, 1–46. Wiesbaden: Springer Fachmedien Wiesbaden, 2014. http://dx.doi.org/10.1007/978-3-658-06466-2_1.
Der volle Inhalt der QuelleMüller-Philipp, Susanne, und Hans-Joachim Gorski. „Topologie“. In Leitfaden Geometrie, 1–45. Wiesbaden: Vieweg+Teubner Verlag, 2005. http://dx.doi.org/10.1007/978-3-8348-9140-2_1.
Der volle Inhalt der QuelleBenölken, Ralf, Hans-Joachim Gorski und Susanne Müller-Philipp. „Topologie“. In Leitfaden Geometrie, 1–51. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-23378-5_1.
Der volle Inhalt der QuelleMüller-Philipp, Susanne, und Hans-Joachim Gorski. „Topologie“. In Leitfaden Geometrie, 1–45. Wiesbaden: Vieweg+Teubner Verlag, 2001. http://dx.doi.org/10.1007/978-3-322-96841-8_1.
Der volle Inhalt der QuelleMüller-Philipp, Susanne, und Hans-Joachim Gorski. „Topologie“. In Leitfaden Geometrie, 1–45. Wiesbaden: Vieweg+Teubner Verlag, 2004. http://dx.doi.org/10.1007/978-3-322-93923-4_1.
Der volle Inhalt der QuelleMüller-Philipp, Susanne, und Hans-Joachim Gorski. „Topologie“. In Leitfaden Geometrie, 1–45. Wiesbaden: Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-8616-3_1.
Der volle Inhalt der QuelleOhshika, Ken’ichi, und Teruhiko Soma. „Geometry and Topology of Geometric Limits I“. In In the Tradition of Thurston, 291–363. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55928-1_9.
Der volle Inhalt der QuelleGelbaum, Bernard R., und John M. H. Olmsted. „Geometry/Topology“. In Theorems and Counterexamples in Mathematics, 186–209. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-0993-5_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Geometría y Topología"
Huebschmann, Johannes. „Singular Poisson–Kähler geometry of certain adjoint quotients“. In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-16.
Der volle Inhalt der QuelleZhukova, Nina I. „Singular foliations with Ehresmann connections and their holonomy groupoids“. In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-23.
Der volle Inhalt der QuelleBrown, Ronald. „Three themes in the work of Charles Ehresmann: local-to-global; groupoids; higher dimensions“. In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-3.
Der volle Inhalt der QuelleMarle, Charles-Michel. „The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles“. In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-4.
Der volle Inhalt der QuellePradines, Jean. „In Ehresmann's footsteps: from group geometries to groupoid geometries“. In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-5.
Der volle Inhalt der QuelleRodrigues, Alexandre A. M. „Contact and equivalence of submanifolds of homogeneous spaces“. In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-9.
Der volle Inhalt der QuelleHausmann, Jean-Claude, und Eugenio Rodriguez. „Holonomy orbits of the snake charmer algorithm“. In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-10.
Der volle Inhalt der QuelleMonthubert, Bertrand. „Contribution of noncommutative geometry to index theory on singular manifolds“. In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-11.
Der volle Inhalt der QuelleWu, Wen-tsun. „On generalized Chern classes and Chern numbers of irreducible complex algebraic varieties with arbitrary singularities“. In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-12.
Der volle Inhalt der QuelleMishchenko, Alexandr S. „K-theory over C*-algebras“. In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-13.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Geometría y Topología"
Varadarajan, Uday. Geometry, topology, and string theory. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/813395.
Der volle Inhalt der QuelleSaxena, Avadh. Topology and Geometry Effects in Electronic Systems. Office of Scientific and Technical Information (OSTI), Oktober 2017. http://dx.doi.org/10.2172/1402575.
Der volle Inhalt der QuelleNaber, Gregory. Invariants of Smooth Four-manifolds: Topology, Geometry, Physics. GIQ, 2012. http://dx.doi.org/10.7546/giq-3-2002-105-140.
Der volle Inhalt der QuelleIvey, Thomas A. Geometry and Topology of Finite-gap Vortex Filaments. GIQ, 2012. http://dx.doi.org/10.7546/giq-7-2006-187-202.
Der volle Inhalt der QuelleKramer, Thomas R. Extracting STEP geometry and topology from a solid modeler:. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.4577.
Der volle Inhalt der QuelleNaber, Gregory L. Topology, Geometry and Physics: Background for the Witten Conjecture I. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-2-2004-27-123.
Der volle Inhalt der QuelleNaber, Gregory L. Topology, Geometry and Physics: Background for the Witten Conjecture II. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-3-2005-1-83.
Der volle Inhalt der QuelleBernatska, Julia. Geometry and Topology of Coadjoint Orbits of Semisimple Lie Groups. GIQ, 2012. http://dx.doi.org/10.7546/giq-9-2008-146-166.
Der volle Inhalt der QuelleOliker, Elena. New Methods for Repair of Geometry and Topology of CAD Models. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2002. http://dx.doi.org/10.21236/ada413304.
Der volle Inhalt der QuelleRockmore, Daniel. Dynamic Information Networks: Geometry, Topology and Statistical Learning for the Articulation of Structure. Fort Belvoir, VA: Defense Technical Information Center, Juni 2015. http://dx.doi.org/10.21236/ada624183.
Der volle Inhalt der Quelle