Zeitschriftenartikel zum Thema „Gibraltar Arc“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Gibraltar Arc.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Gibraltar Arc" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

PERRI, FRANCESCO. „Reconstructing chemical weathering during the Lower Mesozoic in the Western-Central Mediterranean area: a review of geochemical proxies“. Geological Magazine 155, Nr. 4 (09.01.2017): 944–54. http://dx.doi.org/10.1017/s0016756816001205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractThe Triassic–Jurassic rift-valley stage of Tethyan rifting in the Western-Central Mediterranean area is characterized by a development of a puzzle of plates and microplates with the deposition of continental redbeds (in the internal domains of the Gibraltar Arc and Calabria–Peloritani Arc) that can be considered a regional lithosome. This paper aims to reconstruct the chemical weathering conditions of the Triassic–Jurassic boundary in the Western-Central Mediterranean area using the geochemical and mineralogical composition of continental redbed mudrocks of Mesozoic age. The mudrocks from the Calabria–Peloritani Arc show higher values of weathering (mobility) indices (αMg=(Al/Mg)sed/(Al/Mg)UCC;αK=(Th/K)sed/(Th/K)UCC;αBa=(Th/Ba)sed/(Th/Ba)UCC) than the Gibraltar Arc samples. Furthermore, the CIA (Chemical Index of Alteration) and MIA (Mineralogical Index of Alteration) values and the ‘Rb-type indices’ (e.g. Rb/Sr and Rb/K ratios) are higher for the Calabria–Peloritani Arc mudrocks than the Gibraltar Arc samples. All these geochemical proxies closely resemble each other and show similar variations suggesting climatic changes towards humid conditions through the Uppermost Triassic to Lowermost Jurassic that favoured chemical weathering conditions. This period is probably characterized by seasonal climate alternations corresponding to an increase in palaeoclimatic humidity. The mineralogical compositions of the Mesozoic mudrocks further confirm these indications as shown by a higher abundance of kaolinite, related to warm–humid conditions, in the Calabria–Peloritani Arc mudrocks than in those of the Gibraltar Arc.
2

Durand-Delga, Michel. „Geological adventures and misadventures of the Gibraltar Arc“. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 157, Nr. 4 (01.12.2006): 687–716. http://dx.doi.org/10.1127/1860-1804/2006/0157-0687.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Salvo Tierra, Ángel Enrique, José C. Báez und Antonio Flores-Moya. „The historical biogeography and conservation value of taxonomic distinctness: The case of ferns flora of the Gibraltar Arc“. Botanica Complutensis 45 (14.04.2021): e75454. http://dx.doi.org/10.5209/bocm.75454.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The pteridofloras of nine locations in the Gibraltar Arc were analyzed using a taxonomic distinctness index. We found that the index could be a proxy of historical biogeography of the pteridofloras from this area. Moreover, the value of the taxonomic distinctness index of the different locations showed relevant relationships with certain geographic variables. Finally, we hypothesize about the value of the information derived from taxonomic distinctness index for conservation of the pteridoflora in the Gibraltar Arc.
4

Morais, I., L. Vinnik, G. Silveira, S. Kiselev und L. Matias. „Mantle beneath the Gibraltar Arc from receiver functions“. Geophysical Journal International 200, Nr. 2 (13.01.2015): 1153–69. http://dx.doi.org/10.1093/gji/ggu456.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Santos‐Bueno, Nerea, Carlos Fernández‐García, Daniel Stich, Flor de Lis Mancilla, Rosa Martín, Antonio Molina‐Aguilera und Jose Morales. „Focal Mechanisms for Subcrustal Earthquakes Beneath the Gibraltar Arc“. Geophysical Research Letters 46, Nr. 5 (13.03.2019): 2534–43. http://dx.doi.org/10.1029/2018gl081587.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Platzman, E. S. „Paleomagnetic rotations and the kinematics of the Gibraltar arc“. Geology 20, Nr. 4 (1992): 311. http://dx.doi.org/10.1130/0091-7613(1992)020<0311:pratko>2.3.co;2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Corsini, M., A. Chalouan und J. Galindo-Zaldivar. „Geodynamics of the Gibraltar Arc and the Alboran Sea region“. Journal of Geodynamics 77 (Juli 2014): 1–3. http://dx.doi.org/10.1016/j.jog.2014.04.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Krijgsman, Wout, und Miguel Garces. „Palaeomagnetic constraints on the geodynamic evolution of the Gibraltar Arc“. Terra Nova 16, Nr. 5 (Oktober 2004): 281–87. http://dx.doi.org/10.1111/j.1365-3121.2004.00564.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fernández-Ibáñez, F., und J. I. Soto. „Crustal rheology and seismicity in the Gibraltar Arc (western Mediterranean)“. Tectonics 27, Nr. 2 (April 2008): n/a. http://dx.doi.org/10.1029/2007tc002192.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Crespo-Blanc, Ana, und Dominique Frizon de Lamotte. „Structural evolution of the external zones derived from the Flysch trough and the South Iberian and Maghrebian paleomargins around the Gibraltar arc: a comparative study“. Bulletin de la Société Géologique de France 177, Nr. 5 (01.09.2006): 267–82. http://dx.doi.org/10.2113/gssgfbull.177.5.267.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract The Betics and Rif cordillera constitute the northern and southern segments of the Gibraltar arc. Two different fold-and-thrust belts, deriving from the South Iberian and Maghrebian paleomargins respectively, developed in front of this orogenic system. By contrast, the Flysch Trough units and the overlying Alboran crustal domain (internal zones), which are situated in the uppermost part of the orogenic wedge, are common to both branches of the arc. The Flyschs Trough units constitute an inactive accretionary prism, derived from a deep elongated trough. From three large-scale profiles and some lithostratigraphic features of the involved sedimentary sequences, the Betic and Rif external domains are compared, mainly from a structural point of view. Although they are generally considered to show major similarities, the Betic and Rif external domains are in fact strikingly different, mainly concerning the structural style, deformation timing and metamorphism: a) the thick-skinned structure in the External Rif domain vs thin-skinned in the Subbetic domain; b) the pre-Oligocene and Miocene stacking in the External Rif domain vs the exclusively Miocene one in the Subbetic domain, and c) the metamorphism present only in part of the External Rif domain (low-grade greenschists facies). By contrast, it was not possible to establish any difference in structural style and deformation timing between the Flysch units outcropping in both branches of the Gibraltar arc.
11

Mériaux, C. A., J. C. Duarte, S. S. Duarte, W. P. Schellart, Z. Chen, F. Rosas, J. Mata und P. Terrinha. „Capture of the Canary mantle plume material by the Gibraltar arc mantle wedge during slab rollback“. Geophysical Journal International 201, Nr. 3 (14.04.2015): 1717–21. http://dx.doi.org/10.1093/gji/ggv120.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Recent evidence suggests that a portion of the Canary plume travelled northeastwards below the lithosphere of the Atlas Mountains in North Africa towards the Alboran domain and was captured ∼10 Ma ago by the Gibraltar subduction system in the Western Mediterranean. The capture would have been associated with the mantle return flow induced by the westward-retreating slab that would have dragged and trapped a portion of the plume material in the mantle wedge of the Gibraltar subduction zone. Such material eventually contaminated the subduction related volcanism in the Alboran region. In this work, we use scaled analogue models of slab–plume interaction to investigate the plausibility of the plume capture. An upper-mantle-scaled model combines a narrow (400 km) edge-fixed subduction plate with a laterally offset compositional plume. The subduction dominated by slab rollback and toroidal mantle flow is seen to increasingly impact on the plume dynamics as the area of influence of the toroidal flow cells at the surface is up to 500 × 1350 km2. While the plume head initially spreads axisymmetrically, it starts being distorted parallel to the plate in the direction of the trench as the slab trench approaches the plume edge at a separation distance of about 500 km, before getting dragged towards mantle wedge. When applied to the Canary plume–Gibraltar subduction system, our model supports the observationally based conceptual model that mantle plume material may have been dragged towards the mantle wedge by slab rollback-induced toroidal mantle flow. Using a scaling argument for the spreading of a gravity current within a channel, we also show that more than 1500 km of plume propagation in the sublithospheric Atlas corridor is dynamically plausible.
12

Amar, Najib, Driss Khattach, Ali Azdimousa, Mimoun Chourak, Antonio Jabaloy, Ahmed Manar und Mounir Amar. „Structure and peridotite of Gibraltar arc southern bloc: gravimetric and aeromagnetic evidences“. Arabian Journal of Geosciences 8, Nr. 11 (25.03.2015): 9801–13. http://dx.doi.org/10.1007/s12517-015-1879-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Garcia-Castellanos, D., und A. Villaseñor. „Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc“. Nature 480, Nr. 7377 (Dezember 2011): 359–63. http://dx.doi.org/10.1038/nature10651.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Palano, Mimmo, Pablo J. González und José Fernández. „Strain and stress fields along the Gibraltar Orogenic Arc: Constraints on active geodynamics“. Gondwana Research 23, Nr. 3 (April 2013): 1071–88. http://dx.doi.org/10.1016/j.gr.2012.05.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

López-Galindo, A., und A. Martín-Algarra. „Palaeogeography and clay mineralogy of mid-Cretaceous flysches in the Gibraltar Arc area“. Cretaceous Research 13, Nr. 5-6 (Oktober 1992): 421–43. http://dx.doi.org/10.1016/0195-6671(92)90008-e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Ramdani, Faiçal, Omar Kettani und Benaissa Tadili. „Evidence for subduction beneath Gibraltar Arc and Andean regions from k-means earthquake centroids“. Journal of Seismology 19, Nr. 1 (03.09.2014): 41–53. http://dx.doi.org/10.1007/s10950-014-9449-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Mattei, M., F. Cifelli, I. Martín Rojas, A. Crespo Blanc, M. Comas, C. Faccenna und M. Porreca. „Neogene tectonic evolution of the Gibraltar Arc: New paleomagnetic constrains from the Betic chain“. Earth and Planetary Science Letters 250, Nr. 3-4 (Oktober 2006): 522–40. http://dx.doi.org/10.1016/j.epsl.2006.08.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Jiménez-Bonilla, A., I. Expósito, J. C. Balanyá, M. Díaz-Azpiroz und L. Barcos. „The role of strain partitioning on intermontane basin inception and isolation, External Western Gibraltar Arc“. Journal of Geodynamics 92 (Dezember 2015): 1–17. http://dx.doi.org/10.1016/j.jog.2015.09.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Gonzalez-Castillo, L., J. Galindo-Zaldivar, M. C. de Lacy, M. J. Borque, F. J. Martinez-Moreno, J. A. García-Armenteros und A. J. Gil. „Active rollback in the Gibraltar Arc: Evidences from CGPS data in the western Betic Cordillera“. Tectonophysics 663 (November 2015): 310–21. http://dx.doi.org/10.1016/j.tecto.2015.03.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Villalaín, J. J., M. L. Osete, R. Vegas, V. García-Dueñas und F. Heller. „Widespread Neogene remagnetization in Jurassic limestones of the South-Iberian palaeomargin (Western Betics, Gibraltar Arc)“. Physics of the Earth and Planetary Interiors 85, Nr. 1-2 (August 1994): 15–33. http://dx.doi.org/10.1016/0031-9201(94)90005-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Elez, Javier, Pablo G. Silva, Pedro Huerta, M. Ángeles Perucha, Jorge Civis, Elvira Roquero, Miguel A. Rodríguez-Pascua, Teresa Bardají, Jorge L. Giner-Robles und Antonio Martínez-Graña. „Quantitative paleotopography and paleogeography around the Gibraltar Arc (South Spain) during the Messinian Salinity Crisis“. Geomorphology 275 (Dezember 2016): 26–45. http://dx.doi.org/10.1016/j.geomorph.2016.09.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Balanyá, J. C., A. Crespo-Blanc, M. Díaz Azpiroz, I. Expósito und M. Luján. „Structural trend line pattern and strain partitioning around the Gibraltar Arc accretionary wedge: Insights as to the mode of orogenic arc building“. Tectonics 26, Nr. 2 (20.03.2007): n/a. http://dx.doi.org/10.1029/2005tc001932.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Expósito, I., J. C. Balanyá, A. Crespo-Blanc, M. Díaz-Azpiroz und M. Luján. „Overthrust shear folding and contrasting deformation styles in a multiple decollement setting, Gibraltar Arc external wedge“. Tectonophysics 576-577 (November 2012): 86–98. http://dx.doi.org/10.1016/j.tecto.2012.04.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Crespo-Blanc, Ana, Menchu Comas und Juan Carlos Balanyá. „Clues for a Tortonian reconstruction of the Gibraltar Arc: Structural pattern, deformation diachronism and block rotations“. Tectonophysics 683 (Juni 2016): 308–24. http://dx.doi.org/10.1016/j.tecto.2016.05.045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Luján, María, Ana Crespo-Blanc und Juan Carlos Balanyá. „The Flysch Trough thrust imbricate (Betic Cordillera): A key element of the Gibraltar Arc orogenic wedge“. Tectonics 25, Nr. 6 (02.11.2006): n/a. http://dx.doi.org/10.1029/2005tc001910.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Balanyá, Juan C., Víctor García-Dueñas, José M. Azañón und Mario Sánchez-Gómez. „Alternating contractional and extensional events in the Alpujarride nappes of the Alboran Domain (Betics, Gibraltar Arc)“. Tectonics 16, Nr. 2 (April 1997): 226–38. http://dx.doi.org/10.1029/96tc03871.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Platt, J. P., und R. L. M. Vissers. „Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran Sea and Gibraltar arc“. Geology 17, Nr. 6 (1989): 540. http://dx.doi.org/10.1130/0091-7613(1989)017<0540:ecotcl>2.3.co;2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

KIRKER, ANDREW I., und JOHN P. PLATT. „Unidirectional slip vectors in the western Betic Cordillera: implications for the formation of the Gibraltar arc“. Journal of the Geological Society 155, Nr. 1 (Januar 1998): 193–207. http://dx.doi.org/10.1144/gsjgs.155.1.0193.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Leblanc, D. „Tectonic adaptation of the External Zones around the curved core of an orogen: the Gibraltar Arc“. Journal of Structural Geology 12, Nr. 8 (Januar 1990): 1013–18. http://dx.doi.org/10.1016/0191-8141(90)90097-i.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Argnani, Andrea, Giovanni Battista Cimini, Francesco Frugoni, Stephen Monna und Caterina Montuori. „The role of continental margins in the final stages of arc formation: Constraints from teleseismic tomography of the Gibraltar and Calabrian Arc (Western Mediterranean)“. Tectonophysics 677-678 (Mai 2016): 135–52. http://dx.doi.org/10.1016/j.tecto.2016.03.037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Kobylinski, Christopher, Keiko Hattori, Scott Smith und Alain Plouffe. „Protracted Magmatism and Mineralized Hydrothermal Activity at the Gibraltar Porphyry Copper-Molybdenum Deposit, British Columbia“. Economic Geology 115, Nr. 5 (01.08.2020): 1119–36. http://dx.doi.org/10.5382/econgeo.4724.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract The Gibraltar Cu-Mo deposit, with a total tonnage of 3.2 million tons (Mt) Cu, is located in the Canadian Cordillera and hosted by the Late Triassic Granite Mountain batholith. The batholith formed through multiple intrusions of tonalitic rocks over a period of ~25 m.y. beginning at 229.2 ± 4.4 Ma in the Quesnel island arc before the accretion of the arc to the North American continent. Late in its evolution, Cu fertile magmas intruded in the center of the batholith, during at least three events from 218.9 ± 3.1 to 205.8 ± 2.1 Ma. The fertile magmas were hotter and more mafic than older barren magmas. They generated magmatic-hydrothermal activity, forming potassic alteration and white mica alteration, and produced Cu mineralization as chalcopyrite-quartz veinlets and disseminated chalcopyrite. Zircon in the Cu-bearing tonalite intrusion (218.9 ± 3.1 Ma) shows high Ce4+/Ce3+ (681 ± 286 [2σ], n =15) compared to those from older barren intrusions (129 ± 56 [2σ], n = 118). Oxidation conditions for parental magmas are calculated using the compositions of zircon and amphibole. The magmas for Cu-bearing intrusions have an average of fayalite-magnetite-quartz buffer (FMQ) +1.7 ± 0.7 (2σ, n = 73), whereas those for older barren intrusions have slightly lower fO2 (avg FMQ +1.3 ± 0.5 [2σ], n = 108), although the values are overlapping for the two. The bulk rocks of Cu-bearing tonalite intrusions in the Granite Mountain batholith have low Sr/Y ratios (&lt;22) independent of the degrees of alteration. The low ratios are also reflected by low Sr/Y in zircon, suggesting that the low Sr/Y ratios of bulk rocks represent those of unaltered rocks. The values are low compared to those associated with many other porphyry Cu deposits globally. The data suggest that igneous rocks elsewhere with low Sr/Y in bulk rocks may have a potential to host economic Cu deposits. Ratios of Ce/Nd and Ce/Ce* (=Ce/((NdN)2SmN)) in zircon are positively correlated with the Ce4+/Ce3+ in zircon from the Granite Mountain batholith. Since the former two ratios can be obtained solely from zircon composition, these ratios from detrital zircon may be useful in evaluating the occurrences of oxidized intrusions in regional mineral exploration.
32

Bokelmann, Götz, Emeline Maufroy, Luisa Buontempo, José Morales und Guilhem Barruol. „Testing oceanic subduction and convective removal models for the Gibraltar arc: Seismological constraints from dispersion and anisotropy“. Tectonophysics 502, Nr. 1-2 (April 2011): 28–37. http://dx.doi.org/10.1016/j.tecto.2010.08.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Rosell, Oriol, Anna Martí, Àlex Marcuello, Juanjo Ledo, Pilar Queralt, Eduard Roca und Joan Campanyà. „Deep electrical resistivity structure of the northern Gibraltar Arc (western Mediterranean): evidence of lithospheric slab break-off“. Terra Nova 23, Nr. 3 (18.03.2011): 179–86. http://dx.doi.org/10.1111/j.1365-3121.2011.00996.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Soto, Juan I., Fermín Fernández-Ibáñez, Manel Fernàndez und Antonio García-Casco. „Thermal structure of the crust in the Gibraltar Arc: Influence on active tectonics in the western Mediterranean“. Geochemistry, Geophysics, Geosystems 9, Nr. 10 (Oktober 2008): n/a. http://dx.doi.org/10.1029/2008gc002061.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

El Kadiri, Khalil, Carlos Sanz de Galdeano, Antonio Pedrera, Ahmed Chalouan, Jesús Galindo-Zaldívar, Ramón Julià, Mustafa Akil, Rachid Hlila und Mfedal Ahmamou. „Eustatic and tectonic controls on Quaternary Ras Leona marine terraces (Strait of Gibraltar, northern Morocco)“. Quaternary Research 74, Nr. 2 (September 2010): 277–88. http://dx.doi.org/10.1016/j.yqres.2010.06.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractWell-preserved Quaternary staircased marine terraces appear on Ras Leona limestone relief. This is a peculiar sector of the Betic-Rif Cordillera, lying in the four-way junction between the Atlantic and the Mediterranean, and Europe and Africa. The age and altitude correlation of the Ras Leona terraces with travertine-covered lateral equivalent terraces fashioned in the neighbouring Beni Younech area, and comparison with those along the Moroccan Atlantic coasts, would suggest that the Ras Leona terraces were mainly formed by eustatic factors. The importance of the eustasy is supported by further comparisons with Spanish and Moroccan Mediterranean terraces and with different marine terraces developed on passive-margin coasts around the world. A tectonic event occurred mainly during the period between the formation of the Maarifian and the Ouljian terraces (i.e., between 370 and 150 ka). The moderate Quaternary tectonic uplift deduced from the marine terraces and its comparison with uplifted marine terraces developed in active subduction setting disagrees with the model of an active eastwards subduction below the Gibraltar tectonic arc.
36

Pedrera, A., A. Ruiz-Constán, J. Galindo-Zaldívar, A. Chalouan, C. Sanz de Galdeano, C. Marín-Lechado, P. Ruano et al. „Is there an active subduction beneath the Gibraltar orogenic arc? Constraints from Pliocene to present-day stress field“. Journal of Geodynamics 52, Nr. 2 (August 2011): 83–96. http://dx.doi.org/10.1016/j.jog.2010.12.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Zeck, H. P. „Mantle peridotites outlining the Gibraltar Arc — centrifugal extensional allochthons derived from the earlier Alpine, westward subducted nappe pile“. Tectonophysics 281, Nr. 3-4 (November 1997): 195–207. http://dx.doi.org/10.1016/s0040-1951(97)00067-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Barcos, L., J. C. Balanyá, M. Díaz-Azpiroz, I. Expósito und A. Jiménez-Bonilla. „Kinematics of the Torcal Shear Zone: Transpressional tectonics in a salient-recess transition at the northern Gibraltar Arc“. Tectonophysics 663 (November 2015): 62–77. http://dx.doi.org/10.1016/j.tecto.2015.05.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Luján, María, Juan Carlos Balanyá und Ana Crespo-Blanc. „Contractional and extensional tectonics in Flysch and Penibetic units (Gibraltar Arc, SW Spain): new constraints on emplacement mechanisms“. Comptes Rendus de l'Académie des Sciences - Series IIA - Earth and Planetary Science 330, Nr. 9 (Mai 2000): 631–37. http://dx.doi.org/10.1016/s1251-8050(00)00200-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Diaz, J., J. Gallart, A. Villaseñor, F. Mancilla, A. Pazos, D. Córdoba, J. A. Pulgar, P. Ibarra und M. Harnafi. „Mantle dynamics beneath the Gibraltar Arc (western Mediterranean) from shear-wave splitting measurements on a dense seismic array“. Geophysical Research Letters 37, Nr. 18 (September 2010): n/a. http://dx.doi.org/10.1029/2010gl044201.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Crespo-Blanc, Ana, J. C. Balanyá, I. Expósito, M. Luján und E. Suades. „Crescent-like large-scale structures in the external zones of the western Gibraltar Arc (Betic–Rif orogenic wedge)“. Journal of the Geological Society 169, Nr. 6 (November 2012): 667–79. http://dx.doi.org/10.1144/jgs2011-115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Feinberg, H., O. Saddiqi und A. Michard. „New constraints on the bending of the Gibraltar Arc from palaeomagnetism of the Ronda peridotites (Betic Cordilleras, Spain)“. Geological Society, London, Special Publications 105, Nr. 1 (1996): 43–52. http://dx.doi.org/10.1144/gsl.sp.1996.105.01.04.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Durand-Delga, Michel, Silvia Gardin, Manuel Esteras und Hélène Paquet. „Le domaine Tariquide (arc de Gibraltar, Espagne et Maroc) : succession sédimentaire et événements structuraux au Lias et au Dogger“. Comptes Rendus Geoscience 337, Nr. 8 (Juni 2005): 787–98. http://dx.doi.org/10.1016/j.crte.2005.03.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Kyriakopoulos, K., V. Karakitsios, M. Tsipoura-Vlachou, G. Barbera, P. Mazzoleni und D. Puglisi. „PETROLOGICAL CHARACTERS OF THE EARLY CRETACEOUS BOEOTHIAN FLYSCH, (CENTRAL GREECE)“. Bulletin of the Geological Society of Greece 43, Nr. 2 (23.01.2017): 663. http://dx.doi.org/10.12681/bgsg.11229.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This paper is aimed to study the petrographic characters of the Boeothian Flysch, an Early Cretaceous turbidite deposit which marks the boundary between the External/Internal Hellenides in central-southern Greece, in order to define a preliminary palaeogeographic reconstruction of the Pindos segment of the Alpine Tethys. The Boeothian Flysch is mainly made up by basal conglomerates and arenaceous-pelitic lithofacies, locally interlayered with Calpionellid micrite limestones. This formation is here supposed to belong to the Early Cretaceous flysch family, which marks the contact between the internal and external areas along all the western and central European Alpine Chains for more than 7,000 km, from the Gibraltar Arc to the Balkans via the Calabria-Peloritani Arc. Provenance of these flysch is commonly connected to internal areas, mainly made up by Hercynian crystalline basements and, locally, by ophiolitic complexes. The petrographic data obtained from representative sandstones of the Boeothian Flysch suggest a provenance from internal sources, formed by a Jurassic carbonate platform, metamorphic basements and by ophiolitic complexes, which can be identified with the Pelagonian Terranes (Auct.). An Early Cretaceous uplift and rejuvenation processes, probably related to the late Cretaceous tectogenesis, widely recorded in almost all the central-western Alpine Tethis, affected these internal domains with consequent production of abundant detrital supply in the innermost sector of the Pindos Ocean, whose external margin was bounded by the Parnassos microcontinent.
45

Michard, André, Ahmed Chalouan, Hugues Feinberg, Bruno Goffé und Raymond Montigny. „How does the Alpine belt end between Spain and Morocco ?“ Bulletin de la Société Géologique de France 173, Nr. 1 (01.01.2002): 3–15. http://dx.doi.org/10.2113/173.1.3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract The Betic-Rif arcuate mountain belt (southern Spain, northern Morocco) has been interpreted as a symmetrical collisional orogen, partly collapsed through convective removal of its lithospheric mantle root, or else as resulting of the African plate subduction beneath Iberia, with further extension due either to slab break-off or to slab retreat. In both cases, the Betic-Rif orogen would show little continuity with the western Alps. However, it can be recognized in this belt a composite orocline which includes a deformed, exotic terrane, i.e. the Alboran Terrane, thrust through oceanic/transitional crust-floored units onto two distinct plates, i.e. the Iberian and African plates. During the Jurassic-Early Cretaceous, the yet undeformed Alboran Terrane was part of a larger, Alkapeca microcontinent bounded by two arms of the Tethyan-African oceanic domain, alike the Sesia-Margna Austroalpine block further to the northeast. Blueschist- and eclogite-facies metamorphism affected the Alkapeka northern margin and adjacent oceanic crust during the Late Cretaceous-Eocene interval. This testifies the occurrence of a SE-dipping subduction zone which is regarded as the SW projection of the western Alps subduction zone. During the late Eocene-Oligocene, the Alkapeca-Iberia collision triggered back-thrust tectonics, then NW-dipping subduction of the African margin beneath the Alboran Terrane. This Maghrebian-Apenninic subduction resulted in the Mediterranean basin opening, and drifting of the deformed Alkapeca fragments through slab roll back process and back-arc extension, as reported in several publications. In the Gibraltar area, the western tip of the Apenninic-Maghrebian subduction merges with that of the Alpine-Betic subduction zone, and their Neogene roll back resulted in the Alboran Terrane collage astride the Azores-Gibraltar transpressive plate boundary. Therefore, the Betic-Rif belt appears as an asymmetrical, subduction/collision orogen formed through a protracted evolution straightfully related to the Alpine-Apenninic mountain building.
46

Stromberg, Simon G., und Brian Bluck. „Turbidite facies, fluid-escape structures and mechanisms of emplacement of the Oligo-Miocene Aljibe Flysch, Gibraltar Arc, Betics, southern Spain“. Sedimentary Geology 115, Nr. 1-4 (Januar 1998): 267–88. http://dx.doi.org/10.1016/s0037-0738(97)00096-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Balanyá, Juan C., Víctor García-Dueñas, José M. Azañón und Mario Sánchez-Gómez. „Reply [to “Comment on ‘Alternating contractional and extensional events in the Alpujarride nappes of the Alboran Domain (Betics, Gibraltar Arc)’”]“. Tectonics 17, Nr. 6 (Dezember 1998): 977–81. http://dx.doi.org/10.1029/1998tc900006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Heit, Benjamin, Flor de Lis Mancilla, Xiaohui Yuan, Jose Morales, Daniel Stich, Rosa Martín und Antonio Molina-Aguilera. „Tearing of the mantle lithosphere along the intermediate-depth seismicity zone beneath the Gibraltar Arc: The onset of lithospheric delamination“. Geophysical Research Letters 44, Nr. 9 (04.05.2017): 4027–35. http://dx.doi.org/10.1002/2017gl073358.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Durand-Delga, Michel, Manuel Esteras, Silvia Gardin und Hélène Paquet. „Le domaine Tariquide (arc de Gibraltar, Espagne et Maroc) : succession et hiatus de la sédimentation du Jurassique supérieur au Paléocène“. Comptes Rendus Geoscience 337, Nr. 9 (Juli 2005): 849–60. http://dx.doi.org/10.1016/j.crte.2005.03.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Guerra-Merchán, Antonio, Francisco Serrano, Rachid Hlila, Khalil El Kadiri, Carlos Sanz de Galdeano und Miguel Garcés. „Tectono-sedimentary evolution of the peripheral basins of the Alboran Sea in the arc of Gibraltar during the latest Messinian-Pliocene“. Journal of Geodynamics 77 (Juli 2014): 158–70. http://dx.doi.org/10.1016/j.jog.2013.12.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie