Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „GRAPHIDE OXIDE“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "GRAPHIDE OXIDE" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "GRAPHIDE OXIDE"
Liu, Hong Bo, Wu Ying Zhang, Feng Lin und Hong Da Cao. „Comparison and Characterization of Two Preparation Methods of Graphene Oxide“. Advanced Materials Research 989-994 (Juli 2014): 125–29. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.125.
Der volle Inhalt der QuelleYıldız, Kübra, und Muhammet Uzun. „Obtaining of Reduced Graphene Oxide from Graphite by using Hummer’s and Chemical Reduction Method“. Academic Perspective Procedia 2, Nr. 3 (22.11.2019): 601–5. http://dx.doi.org/10.33793/acperpro.02.03.59.
Der volle Inhalt der QuelleMuzyka, Roksana, Sabina Drewniak, Tadeusz Pustelny, Marcin Sajdak und Łukasz Drewniak. „Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy Statistical Analysis“. Materials 14, Nr. 4 (06.02.2021): 769. http://dx.doi.org/10.3390/ma14040769.
Der volle Inhalt der QuelleYao, Yu Qin, Yin Jie Cen, Richard D. Sisson und Jian Yu Liang. „A Synthesize Protocol for Graphene Nanosheets“. Materials Science Forum 880 (November 2016): 3–6. http://dx.doi.org/10.4028/www.scientific.net/msf.880.3.
Der volle Inhalt der QuelleStrankowski, Michał, Damian Włodarczyk, Łukasz Piszczyk und Justyna Strankowska. „Polyurethane Nanocomposites Containing Reduced Graphene Oxide, FTIR, Raman, and XRD Studies“. Journal of Spectroscopy 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/7520741.
Der volle Inhalt der QuelleDrewniak, Sabina Elżbieta, und Łukasz Drewniak. „The influence of the type of graphite on the size of reduced graphene oxide“. Photonics Letters of Poland 14, Nr. 2 (01.07.2022): 34. http://dx.doi.org/10.4302/plp.v14i2.1153.
Der volle Inhalt der QuelleSaid, Muhammad, Maria Ulfa, Addy Rachmat, Desnelli und Poedji Loekitowati Hariani. „Synthesis of Reduced Graphene Oxide from Cellulose and its Applications for Methylene Blue Adsorption“. Solid State Phenomena 345 (28.07.2023): 153–70. http://dx.doi.org/10.4028/p-n4sufo.
Der volle Inhalt der QuelleLiu, Hong Bo, Wu Ying Zhang und Feng Lin. „Synthesis and Property of Polyurethane Acrylates Modified Graphene Oxide“. Key Engineering Materials 703 (August 2016): 273–77. http://dx.doi.org/10.4028/www.scientific.net/kem.703.273.
Der volle Inhalt der QuelleCorso, Marla, Ana Carolina de Dias Albuquerque, Lídia Pereira Amaro, Lilian Keylla Berto, Silvia Luciana Favaro, Hugo Eiji Imai, Adriano Pereira Cardoso, Natália Ueda Yamaguchi und Luciana Cristina Soto Herek Rezende. „Graphene oxide synthesis for composite material preparation“. Revista Ibero-Americana de Ciências Ambientais 10, Nr. 1 (20.06.2019): 157–66. http://dx.doi.org/10.6008/cbpc2179-6858.2019.001.0013.
Der volle Inhalt der QuelleLi, Jinghao, Qiangu Yan, Xuefeng Zhang, Jilei Zhang und Zhiyong Cai. „Efficient Conversion of Lignin Waste to High Value Bio-Graphene Oxide Nanomaterials“. Polymers 11, Nr. 4 (04.04.2019): 623. http://dx.doi.org/10.3390/polym11040623.
Der volle Inhalt der QuelleDissertationen zum Thema "GRAPHIDE OXIDE"
Avril, Florian. „Contribution à l'élaboration d'un supercondensateur à basse de graphène“. Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS034/document.
Der volle Inhalt der QuelleThe use of micro-power generation energy is a promising concept that consists in harvesting low and diffuse energy sources present in our environment for the supply of autonomous systems. The growing number of new miniaturized and communicating devices in civil and military fields should accentuate the phenomenon of energy dependence and open up new markets.Among possible sources of renewable energy, solar energy is the most promising source because it is potentially the most powerful and best distributed. The development of these micro-energy recovery systems involves low costs with flexible substrate (paper, polymer) and easily exploitable materials. After energy recovery, it is necessary for the autonomous systems to store electricity.For this purpose, supercapacitors are ideal candidates. Indeed, the main advantage of supercapacitors over batteries is their high power density (fast energy collection) as well as a long cycle life. The thesis concerns the manufacture of a supercapacitor and ultimately coupling with a solar cell. The work specifically concerns the study of graphene oxide (GO) synthesized by the Hummers and Marcano methods, its reduction in reduced graphene oxide (RGO) by chemical and electrochemical routes and the realization of supercapacitor. In this project, the properties of reduced graphene oxide (RGO) will be optimized during the reduction step and the material will be shaped into a sandwich structure (RGO / electrolyte / RGO) or interdigitated.Keywords: Graphene,supercapacitor, graphene oxide,energy micro-source
Nyangiwe, Nangamso Nathaniel. „Graphene based nano-coatings: synthesis and physical-chemical investigations“. Thesis, UWC, 2012. http://hdl.handle.net/11394/3237.
Der volle Inhalt der QuelleIt is well known that a lead pencil is made of graphite, a naturally form of carbon, this is important but not very exciting. The exciting part is that graphite contains stacked layers of graphene and each and every layer is one atom thick. Scientists believed that these graphene layers could not be isolated from graphite because they were thought to be thermodynamically unstable on their own and taking them out from the parent graphite crystal will lead them to collapse and not forming a layer. The question arose, how thin one could make graphite. Two scientists from University of Manchester answered this question by peeling layers from a graphite crystal by using sticky tape and then rubbing them onto a silicon dioxide surface. They managed to isolate just one atom thick layer from graphite for the first time using a method called micromechanical cleavage or scotch tape. In this thesis chemical method also known as Hummers method has been used to fabricate graphene oxide (GO) and reduced graphene oxide. GO was synthesized through the oxidation of graphite to graphene oxide in the presence of concentrated sulphuric acid, hydrochloric acid and potassium permanganate. A strong reducing agent known as hydrazine hydrate has also been used to reduce GO to rGO by removing oxygen functional groups, but unfortunately not all oxygen functional groups have been removed, that is why the final product is named rGO. GO and rGO solutions were then deposited on silicon substrates separately. Several characterization techniques in this work have been used to investigate the optical properties, the morphology, crystallography and vibrational properties of GO and rGO.
Arbuzov, A. A., V. E. Muradyan und B. P. Tarasov. „Synthesis of Few-layer Graphene Sheets via Chemical and Thermal Reduction of Graphite Oxide“. Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35063.
Der volle Inhalt der QuelleSokolov, Denis A. „Investigation of Graphene Formation from Graphite Oxide and Silicon Carbide“. Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/53642.
Der volle Inhalt der QuellePakulski, Dawid. „Graphene based materials and their potential applications“. Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAF060.
Der volle Inhalt der QuelleScientific purpose of this doctoral dissertation is synthesis of functionalized two-dimensional materials (graphene and graphene oxide) and their comprehensive physicochemical characterization, with particular emphasis on adsorption and energy storage properties. We could demonstrate that covalent modification of graphene oxide (GO) with an organic polymer (BPEI) very favorably affects the efficiency of the adsorption process. The maximum adsorption capacity (qmax) values for heavy metal ions significantly favour this material in comparison to the majority of known carbon adsorbents. Moreover, functionalization of GO with mesoporous aminosilica (SiO2NH2) leads to obtaining an efficient and rapid adsorbent of organic cationic dyes (MB, RhB, MV). ln addition we proved that the functionalization of graphene (EEG) using the POM-surfactant su bu nits proved that this type of organic-inorganic hybrids material is very stable and have interesting electrical properties with potential application in the production of supercapacitors
Alami, Omar. „Oxyde de graphène fonctionnalisés par des dendrons et dendrimères pour des applications en oncologie“. Thesis, Toulouse 3, 2022. http://www.theses.fr/2022TOU30086.
Der volle Inhalt der QuelleGraphene, a monolayer of carbon atoms densely packed in a honeycomb lattice, was first isolated in 2004. In recent years, research on graphene and its derivatives has generated considerable interest in a wide range of research activities thanks to its interesting properties. The easiest and most versatile way to obtain graphene-based nanocomposites is to oxidize natural graphite to obtain graphene oxide (GO), a material with a surface rich in modifiable chemical functions. Graphene oxide nanocomposites have been synthesized for potential applications in electronics, energy storage, catalysis and sorption, gas storage, separation and detection as well as in the biomedical field. Dendrimers are particularly advantageous macromolecules for a very large number of applications in extremely varied fields. This interest resides essentially in their properties of cooperativity and multivalence, as well as in their very high capacity for encapsulation or fixing of small molecules, and this in a volume of nanometric size. This structural characteristic is the consequence of their unique branched architecture containing a central core and having many peripheral functions. Dendrimers are very interesting tools for the delivery of drugs and nucleic acids. In this work we will develop simple approaches to decorate the surface of graphene oxide with phosphorus dondron and dendrimers in order to create new hybrid materials with new properties. First, the synthesis of classical phosphorus dendrimers and of AB5 dendrons will be carried out, followed by the grafting of the different monomers on their surface. In parallel the preparation of graphene oxide (GO) as well as the modification of the GO surface with different methods will be carried out, and finally the grafting of the different dendrons on the platform of graphene oxide will afford new hybrid materials that will be biologically tested
Leve, Zandile Dennis. „Determination of paracetamol at the electrochemically reduced graphene oxide-metal nanocomposite modified pencil graphite (ERGO-MC-PGE) electrode using adsorptive stripping differential pulse voltammetry“. University of Western Cape, 2020. http://hdl.handle.net/11394/7350.
Der volle Inhalt der QuelleThis project focuses on the development of simple, highly sensitive, accurate, and low cost electrochemical sensors based on the modification of pencil graphite electrodes by the electrochemical reduction of graphene oxide-metal salts as nanocomposites (ERGO-MC-PGE; MC = Sb or Au nanocomposite). The electrochemical sensors ERGO-Sb-PGE and ERGO-Au-PGE were used in the determination of paracetamol (PC) in pharmaceutical formulations using adsorptive stripping differential pulse voltammetry. The GO was prepared from graphite via a modified Hummers’ method and characterized by FTIR and Raman spectroscopy to confirm the presence of oxygen functional groups in the conjugated carbon-based structure whilst, changes in crystalline structure was observed after XRD analysis of graphite and GO.
2023-10-07
Nasr, Maryline. „Elaboration of oxides membranes by electrospinning for photocatalytic applications“. Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT210/document.
Der volle Inhalt der QuelleNowadays, industrial toxic chemicals are still not properly treated and these contaminants may directly impact the safety of drinking water. Photocatalysis “a green technology” is an effective and economical approach and plays an important role in solar energy conversion and degradation of organic pollutants. This thesis manuscript reports on developing advanced materials (based on TiO2 and ZnO) being capable of exploiting renewable solar energy for solving the environmental pollution problems. A part of this work was dedicated to improve the UV and visible light TiO2 photoresponse. Therefore, rGO/TiO2, BN/TiO2 and BN-Ag/TiO2 composties nanofibers were successfully elaborated using the electrospinning technique. The second part focused on ZnO. Novel structures of ZnO/ZnAl2O4 multi co-centric nanotubes and Al2O3 doped ZnO nanotubes were designed by combining the two techniques of atomic layer deposition (ALD) and electrospinning. The morphological, structural and optical properties of all synthesized nanostructures were investigated by several characterization techniques. The results show that the chemical and physical properties have a high impact on the photocatalytic properties of the synthesized materials. Moreover, it was found that the doping effect lead to a more efficient charge separation in the photocatalyst, which is an advantage for photocatalytic activities. In addition, methyl orange and methylene blue were used as model reference. A significant enhancement and a long-term stability in the photocatalytic activity were observed with the doped materials compared to the non-doped ones under both UV and visible light. Antibacterial tests against Escherichia coli have also been performed; the results indicate that BN-Ag/TiO2 present interesting photocatalytic properties for both organic compound degradation and bacterial removal
Dahlberg, Tobias. „The first order Raman spectrum of isotope labelled nitrogen-doped reduced graphene oxide“. Thesis, Umeå universitet, Institutionen för fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-116699.
Der volle Inhalt der QuelleArbuzov, A. A., V. E. Muradyan, B. P. Tarasov und E. A. Sokolov. „Preparation of Amino-Functionalized Graphene Sheets and their Conductive Properties“. Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35639.
Der volle Inhalt der QuelleBücher zum Thema "GRAPHIDE OXIDE"
Dimiev, Ayrat M., und Siegfried Eigler, Hrsg. Graphene Oxide. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.
Der volle Inhalt der QuelleGao, Wei, Hrsg. Graphene Oxide. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15500-5.
Der volle Inhalt der QuelleZhao, Jijun, Lizhao Liu und Fen Li. Graphene Oxide: Physics and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44829-8.
Der volle Inhalt der QuellePendolino, Flavio, und Nerina Armata. Graphene Oxide in Environmental Remediation Process. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60429-9.
Der volle Inhalt der QuelleGao, Zhenghan. Phase Diagrams of Water Confined by Graphene and Graphene Oxide. [New York, N.Y.?]: [publisher not identified], 2018.
Den vollen Inhalt der Quelle findenEzema, Fabian Ifeanyichukwu, Tingkai Zhao und Ishaq Ahmad. Graphene Oxide in Enhancing Energy Storage Devices. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003215196.
Der volle Inhalt der QuelleJean, Corbin, und United States. National Aeronautics and Space Administration., Hrsg. Synthesis and thermal stability of graphite oxide-like materials. [Washington, D.C: National Aeronautics and Space Administration, 1997.
Den vollen Inhalt der Quelle findenGraphene nanoelectronics: From materials to circuits. New York: Springer, 2012.
Den vollen Inhalt der Quelle findenFusaro, Robert L. Sputtered cadmium oxide as a surface pretreatment for graphite solid lubricant films. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1986.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Ferric chloride graphite intercalation compounds prepared from graphite fluoride. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "GRAPHIDE OXIDE"
Lerf, Anton. „Graphite Oxide Story - From the Beginning Till the Graphene Hype“. In Graphene Oxide, 1–35. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch1.
Der volle Inhalt der QuelleSugimoto, Wataru. „Graphene (or Reduced Graphite Oxide Nanosheets)“. In Encyclopedia of Applied Electrochemistry, 954–63. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_507.
Der volle Inhalt der QuelleGao, Wei. „Graphite Oxide“. In Springer Handbook of Nanomaterials, 571–604. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20595-8_15.
Der volle Inhalt der QuelleOliva González, Cesar Máximo, Oxana V. Kharissova, Cynthia Estephanya Ibarra Torres, Boris I. Kharisov und Lucy T. Gonzalez. „Chapter 1. Hybrids of Graphite, Graphene and Graphene Oxide“. In All-carbon Composites and Hybrids, 1–30. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162718-00001.
Der volle Inhalt der QuelleGudarzi, Mohsen Moazzami, Seyed Hamed Aboutalebi und Farhad Sharif. „Graphene Oxide-Based Composite Materials“. In Graphene Oxide, 314–63. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch10.
Der volle Inhalt der QuelleKovbasyuk, Larisa, und Andriy Mokhir. „Toxicity Studies and Biomedical Applications of Graphene Oxide“. In Graphene Oxide, 364–81. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch11.
Der volle Inhalt der QuellePavlidis, Ioannis V. „Catalysis“. In Graphene Oxide, 382–409. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch12.
Der volle Inhalt der QuelleLowe, Sean E., und Yu Lin Zhong. „Challenges of Industrial-Scale Graphene Oxide Production“. In Graphene Oxide, 410–31. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch13.
Der volle Inhalt der QuelleDimiev, Ayrat M. „Mechanism of Formation and Chemical Structure of Graphene Oxide“. In Graphene Oxide, 36–84. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch2.
Der volle Inhalt der QuelleEigler, Siegfried, und Ayrat M. Dimiev. „Characterization Techniques“. In Graphene Oxide, 85–120. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "GRAPHIDE OXIDE"
Hidayah, N. M. S., Wei-Wen Liu, Chin-Wei Lai, N. Z. Noriman, Cheng-Seong Khe, U. Hashim und H. Cheun Lee. „Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization“. In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE’17): Sustainable Technology And Practice For Infrastructure and Community Resilience. Author(s), 2017. http://dx.doi.org/10.1063/1.5005764.
Der volle Inhalt der QuelleRohini, Puliyasseri, und Dillibabu Sastikumar. „Synthesis and characterization of Graphite Oxide from Graphite using Nano second pulsed laser ablation in liquid“. In Advanced Solid State Lasers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/assl.2022.jtu6b.17.
Der volle Inhalt der QuelleChen, Zhen, Wanyoung Jang, Wenzhong Bao, Chun Ning Lau und Chris Dames. „Heat Transfer in Encased Graphene“. In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88370.
Der volle Inhalt der QuelleJankovský, Ondřej, David Sedmidubský, Michal Lojka und Zdeněk Sofer. „Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene“. In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4994480.
Der volle Inhalt der QuelleKanbur, Kürşat, Işıl Birlik, Fatih Sargin, Funda Ak Azem und Ahmet Türk. „Optimization of Oxidation Time During Graphene Oxide Production“. In 7th International Students Science Congress. Izmir International guest Students Association, 2023. http://dx.doi.org/10.52460/issc.2023.045.
Der volle Inhalt der QuelleKanbur, Kürşat, Işıl Birlik, Fatih Sargin, Funda Ak Azem und Ahmet Türk. „Optimization of Oxidation Time During Graphene Oxide Production“. In 7th International Students Science Congress. Izmir International guest Students Association, 2023. http://dx.doi.org/10.52460/issc.2023.045.
Der volle Inhalt der QuelleRafitasari, Yeti, Haris Suhendar, Nurul Imani, Fitri Luciana, Hesti Radean und Iman Santoso. „SINTESIS GRAPHENE OXIDE DAN REDUCED GRAPHENE OXIDE“. In SEMINAR NASIONAL FISIKA 2016 UNJ. Pendidikan Fisika dan Fisika FMIPA UNJ, 2016. http://dx.doi.org/10.21009/0305020218.
Der volle Inhalt der Quelle„Graphite Nanoplatelets and Graphene Oxide Influence on C-S-H Formation“. In "SP-329: Superplasticizers and Other Chemical Admixtures in Concrete Proceedings Twelfth International Conference, Beijing, China". American Concrete Institute, 2018. http://dx.doi.org/10.14359/51711218.
Der volle Inhalt der QuelleZhang, Yan, Yingying Wang, Yunfei Chen und Yujuan Wang. „The Friction Forces Between Si Tip and Multilayer Graphene“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87131.
Der volle Inhalt der QuelleIllera, Danny, Chatura Wickramaratne, Diego Guillen, Chand Jotshi, Humberto Gomez und D. Yogi Goswami. „Stabilization of Graphene Dispersions by Cellulose Nanocrystals Colloids“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87830.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "GRAPHIDE OXIDE"
Blanchard, Jeremy, David C. Gerlach, Randall D. Scheele, Mark L. Stewart, Bruce D. Reid, Phillip A. Gauglitz, Larry M. Bagaasen et al. Uranium Oxide Aerosol Transport in Porous Graphite. Office of Scientific and Technical Information (OSTI), Januar 2012. http://dx.doi.org/10.2172/1051989.
Der volle Inhalt der QuelleSevigny, Gary J., Radha K. Motkuri, David W. Gotthold, Leonard S. Fifield, Anthony P. Frost und Wesley Bratton. Separation of tritiated water using graphene oxide membrane. Office of Scientific and Technical Information (OSTI), Juni 2015. http://dx.doi.org/10.2172/1222908.
Der volle Inhalt der QuelleMattei-Sosa, Jose, Victor Medina, Chris Griggs und Veera Gude. Crosslinking graphene oxide and chitosan to form scalable water treatment membranes. Engineer Research and Development Center (U.S.), Juli 2019. http://dx.doi.org/10.21079/11681/33263.
Der volle Inhalt der QuelleMannion, J. M., R. M. Achey, J. H. Hewitt, C. R. Shick, Jr. und M. J. Siegfried. Reduced graphene oxide as a filament material for thermal ionization mass spectrometry. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475282.
Der volle Inhalt der QuelleAttias, Andre-Jean, Kwang-Sup Lee und Alex K. Jen. Coupling Graphene Sheets with Iron Oxide Nanoparticles for Energy Storage and Microelectronics. Fort Belvoir, VA: Defense Technical Information Center, August 2015. http://dx.doi.org/10.21236/ada636883.
Der volle Inhalt der QuelleKichukova, Diana, Daniela Kovacheva, Anna Staneva und Ivanka Spassova. Аntimicrobial Impact of Nanocomposites of Reduced Graphene Oxide with Silver and Copper. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, Februar 2021. http://dx.doi.org/10.7546/crabs.2021.02.04.
Der volle Inhalt der QuelleBrossia. L52119 Comparative Consumption Rates of Impressed Current Cathodic Protection Anodes. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 2004. http://dx.doi.org/10.55274/r0010953.
Der volle Inhalt der QuelleMedina, Victor, Chandler Noel und Jose Mattei-Sosa. Conceptual development and testing of a chitosan/graphene oxide (CSGO) “bandage” to isolate and remove chemical contamination from surfaces. Engineer Research and Development Center (U.S.), Juli 2019. http://dx.doi.org/10.21079/11681/33403.
Der volle Inhalt der QuelleVidal, Judith. Graphene Oxide Fuel Cell Materials Development and Testing: Cooperative Research and Development Final Report, CRADA Number: CRD-16-648. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1659914.
Der volle Inhalt der Quelle