Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Gyrofluid models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Gyrofluid models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Gyrofluid models"
Dorland, W., und G. W. Hammett. „Gyrofluid turbulence models with kinetic effects“. Physics of Fluids B: Plasma Physics 5, Nr. 3 (März 1993): 812–35. http://dx.doi.org/10.1063/1.860934.
Der volle Inhalt der QuelleScott, Bruce D. „Free-energy conservation in local gyrofluid models“. Physics of Plasmas 12, Nr. 10 (Oktober 2005): 102307. http://dx.doi.org/10.1063/1.2064968.
Der volle Inhalt der QuelleFransson, E., H. Nordman und P. Strand. „Upgrade and benchmark of quasi-linear transport model EDWM“. Physics of Plasmas 29, Nr. 11 (November 2022): 112305. http://dx.doi.org/10.1063/5.0119515.
Der volle Inhalt der QuelleTassi, E., P. L. Sulem und T. Passot. „Reduced models accounting for parallel magnetic perturbations: gyrofluid and finite Larmor radius–Landau fluid approaches“. Journal of Plasma Physics 82, Nr. 6 (01.11.2016). http://dx.doi.org/10.1017/s0022377816000921.
Der volle Inhalt der QuelleTassi, E., D. Grasso, D. Borgogno, T. Passot und P. L. Sulem. „A reduced Landau-gyrofluid model for magnetic reconnection driven by electron inertia“. Journal of Plasma Physics 84, Nr. 4 (29.06.2018). http://dx.doi.org/10.1017/s002237781800051x.
Der volle Inhalt der QuellePassot, T., und P. L. Sulem. „Imbalanced kinetic Alfvén wave turbulence: from weak turbulence theory to nonlinear diffusion models for the strong regime“. Journal of Plasma Physics 85, Nr. 03 (16.05.2019). http://dx.doi.org/10.1017/s0022377819000187.
Der volle Inhalt der QuelleSciortino, Francesco, Nathan T. Howard, Tomas Odstrcil, Max E. Austin, Igor Bykov, Colin Chrystal, Shaun R. Haskey et al. „Investigation of core impurity transport in DIII-D diverted negative triangularity plasmas“. Plasma Physics and Controlled Fusion, 26.09.2022. http://dx.doi.org/10.1088/1361-6587/ac94f6.
Der volle Inhalt der QuelleDissertationen zum Thema "Gyrofluid models"
Granier, Camille. „Nouveaux développements sur la théorie des instabilités des feuilles de courant dans les plasmas non-collisionels“. Electronic Thesis or Diss., Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4109.
Der volle Inhalt der QuelleMagnetic reconnection is a change of topology of the magnetic field, responsible for explosive release of magnetic energy in astrophysical plasmas, as in the case of magnetospheric substorms and coronal mass ejections, as well as in laboratory plasmas, which is the case of sawtooth crashes in tokamaks. In collisionless plasmas as, for instance, the magnetosphere and the solar wind, electron inertia becomes particularly relevant to drive reconnection at regions of intense localized current, denoted as current sheets. In these non-collisional environments, the temperature can often be anisotropic and effects at the electron scale on the reconnection process can become non-negligible.In this thesis, the stability of two-dimensional current sheets, with respect to reconnecting perturbations, in collisionless plasmas with a strong guide field is analysed on the basis of gyrofluid models assuming cold ions. These models can take into account an equilibrium temperature anisotropy,and a finite βe, a parameter corresponding to the ratio between equilibrium electron kinetic pressure and magnetic pressure.We derive and analyze a dispersion relation for the growth rate of collisionless tearing modes accounting for equilibrium electron temperature anisotropy. The analytical predictions are tested against numerical simulations, showing a very good quantitative agreement.In the isotropic case, accounting for finite βe effects, we observe a stabilization of the tearing growth rate when electron finite Larmor radius effects become relevant. In the nonlinear phase, stall phases and faster than exponential phases are observed, similarly to what occurs in the presence of ion finite Larmor radius effects.We also investigate the marginal stability conditions of secondary current sheets, for the development of plasmoids, in collisionless plasmas. In the isotropic βe → 0 regime, we analyze the geometry that characterizes the reconnecting current sheet, and identify the conditions for which it is plasmoid unstable. Our study shows that plasmoids can be obtained, in this context, from current sheets with an aspect ratio much smaller than in the collisional regime. Furthermore, we investigate the plasmoid formation comparing gyrofluid and gyrokinetic simulations.This made it possible to show that the effect of finite βe, promotes the plasmoid instability. Finally, we study the impact of the closure applied on the moments, performed during the derivation of the gyrofluid model, on the distribution and conversion of energy during reconnection
La riconnessione magnetica è un cambiamento nella topologia delcampo magnetico, responsabile del rilascio esplosivo di energia magnetica nei plasmiastrofisici, come nelle tempeste magnetosferiche e nelle espulsioni di massa coronale,nonché nei plasmi di laboratorio, come nel caso delle oscillazioni a dente di sega neitokamak. Nei plasmi non-collisionali come, ad esempio, la magnetosfera e il vento solare,l’inerzia elettronica diventa particolarmente efficace nel causare la riconnessionein regioni di corrente intensa e localizzata, detti strati di corrente. In tali plasmi noncollisionali,la temperatura può essere spesso anisotropa e gli effetti su scala elettronicasul processo di riconnessione possono diventare non trascurabili.In questa tesi, viene analizzata la stabilità di strati di corrente bidimensionali inplasmi non-collisionali con un forte campo guida, sulla base di modelli girofluidi cheassumono ioni freddi. Questi modelli possono tenere conto di un’anisotropia di temperaturadi equilibrio e di un βe finito. Quest’ultimo è un parametro corrispondente alrapporto tra la pressione cinetica elettronica di equilibrio e la pressione magnetica.Deriviamo e analizziamo una relazione di dispersione per il tasso di crescita dei moditearing non-collisionali tenendo conto dell’anisotropia della temperatura di equilibriodegli elettroni. Le previsioni analitiche sono verificate mediante simulazioni numeriche,che mostrano un ottimo accordo quantitativo. Nel caso isotropico, tenendoconto degli effetti di βe finito, si osserva una stabilizzazione del tasso di crescita delmodo tearing quando diventano rilevanti gli effetti del raggio finito di Larmor deglielettroni. Nella fase non lineare si osservano fasi di decelerazione e fasi di accelerazione,simili a quanto avviene in presenza di effetti del raggio di Larmor finito ionico.Studiamo anche le condizioni di stabilità marginale degli strati di corrente secondaria,per lo sviluppo di plasmoidi, in plasmi senza collisioni. Nel regime isotropicocon βe → 0, analizziamo la geometria che caratterizza lo strato di corrente e identifichiamole condizioni in cui esso diventa instabile a causa di un’instabilità che generaplasmoidi. Il nostro studio mostra che i plasmoidi possono essere ottenuti, in questocontesto, da strati di corrente aventi un rapporto d’aspetto molto più piccolo rispettoal regime collisionale. Inoltre, studiamo la formazione di plasmoidi confrontando simulazionigirofluidi e girocinetiche. Ciò ha permesso di dimostrare che l’effetto di βe promuove l’instabilità che genera plasmoidi. Infine, si studia l’impatto della chiusuraapplicata ai momenti, eseguita durante la derivazione del modello girofluido, sulla distribuzionee conversione dell’energia durante la riconnessione
Strintzi, Dafni [Verfasser]. „Field theory of nonlinear gyrofluid models / Dafni Strintzi“. 2005. http://d-nb.info/977850285/34.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Gyrofluid models"
Sugama, H., T. H. Watanabe und S. Ferrando i Margalet. „Gyrokinetic and Gyrofluid Models for Zonal Flow Dynamics in Ion and Electron Temperature Gradient Turbulence“. In THEORY OF FUSION PLASMAS: Joint Varenna-Lausanne International Workshop. AIP, 2006. http://dx.doi.org/10.1063/1.2404579.
Der volle Inhalt der QuelleDorland, W., G. w. Hammett, T. S. Hahm und M. A. Beer. „Nonlinear gyrofluid model of ITG turbulence“. In U.S.-Japan workshop on ion temperature gradient-driven turbulent transport. AIP, 1994. http://dx.doi.org/10.1063/1.44513.
Der volle Inhalt der QuelleRobertson, Scott. „Gyrofluid Model of Plasma Expansion in a Magnetic Nozzle“. In 2018 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2018. http://dx.doi.org/10.1109/icops35962.2018.9575820.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Gyrofluid models"
Dorland, W., und G. W. Hammett. Gyrofluid turbulence models with kinetic effects. Office of Scientific and Technical Information (OSTI), Dezember 1992. http://dx.doi.org/10.2172/10114655.
Der volle Inhalt der QuelleDorland, W., und G. W. Hammett. Gyrofluid turbulence models with kinetic effects. Office of Scientific and Technical Information (OSTI), Dezember 1992. http://dx.doi.org/10.2172/6829187.
Der volle Inhalt der QuelleScott Parker. Plasma Simulation Using Gyrokinetic-Gyrofluid Hybrid Models. Office of Scientific and Technical Information (OSTI), April 2009. http://dx.doi.org/10.2172/1010522.
Der volle Inhalt der Quelle