Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hausdorff Distance“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hausdorff Distance" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hausdorff Distance"
Wu, Wei. „Quantized Gromov–Hausdorff distance“. Journal of Functional Analysis 238, Nr. 1 (September 2006): 58–98. http://dx.doi.org/10.1016/j.jfa.2005.02.017.
Der volle Inhalt der QuelleKraft, Daniel. „Computing the Hausdorff Distance of Two Sets from Their Distance Functions“. International Journal of Computational Geometry & Applications 30, Nr. 01 (März 2020): 19–49. http://dx.doi.org/10.1142/s0218195920500028.
Der volle Inhalt der QuelleAli, Mehboob, Zahid Hussain und Miin-Shen Yang. „Hausdorff Distance and Similarity Measures for Single-Valued Neutrosophic Sets with Application in Multi-Criteria Decision Making“. Electronics 12, Nr. 1 (31.12.2022): 201. http://dx.doi.org/10.3390/electronics12010201.
Der volle Inhalt der QuelleBERINDE, VASILE, und MĂDĂLINA PĂCURAR. „"Why Pompeiu-Hausdorff metric instead of Hausdorff metric?"“. Creative Mathematics and Informatics 31, Nr. 1 (01.02.2022): 33–41. http://dx.doi.org/10.37193/cmi.2022.01.03.
Der volle Inhalt der QuelleBERINDE, VASILE, und MADALINA PACURAR. „The role of the Pompeiu-Hausdorff metric in fixed point theory“. Creative Mathematics and Informatics 24, Nr. 2 (2015): 143–50. http://dx.doi.org/10.37193/cmi.2015.02.17.
Der volle Inhalt der QuelleBERINDE, VASILE, und MADALINA PACURAR. „The role of the Pompeiu-Hausdorff metric in fixed point theory“. Creative Mathematics and Informatics 22, Nr. 2 (2013): 143–50. http://dx.doi.org/10.37193/cmi.2013.02.13.
Der volle Inhalt der QuelleBîrsan, Temistocle. „Convexity and Hausdorff-Pompeiu distance“. Mathematica Moravica 15, Nr. 1 (2011): 17–23. http://dx.doi.org/10.5937/matmor1101017b.
Der volle Inhalt der QuelleBeer, Gerald, und Luzviminda Villar. „Borel measures and Hausdorff distance“. Transactions of the American Mathematical Society 307, Nr. 2 (01.02.1988): 763. http://dx.doi.org/10.1090/s0002-9947-1988-0940226-0.
Der volle Inhalt der QuelleKerr, David. „Matricial quantum Gromov–Hausdorff distance“. Journal of Functional Analysis 205, Nr. 1 (Dezember 2003): 132–67. http://dx.doi.org/10.1016/s0022-1236(03)00195-2.
Der volle Inhalt der QuelleSendov, Bl. „Hausdorff distance and image processing“. Russian Mathematical Surveys 59, Nr. 2 (30.04.2004): 319–28. http://dx.doi.org/10.1070/rm2004v059n02abeh000721.
Der volle Inhalt der QuelleDissertationen zum Thema "Hausdorff Distance"
Richard, Abigail H. „Quasihyperbolic Distance, Pointed Gromov-Hausdorff Distance, and Bounded Uniform Convergence“. University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin156086547392659.
Der volle Inhalt der QuelleZerelli, Manel. „Systèmes mécatroniques à paramètres variables : analyse du comportement et approche du tolérancement“. Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2014. http://www.theses.fr/2014ECAP0032/document.
Der volle Inhalt der QuelleIn this thesis we proposed a method for the study of parametric variation for continuous and hybrid systems and an approach for mechatronics tolerancing. We first studied the different existing approaches to take into account the variation of parameters. For continuous systems with variable parameters we chose the method of differential inclusions. We took the Raczynski algorithm and we have developed an optimization algorithm which is based on the steepest descent method with an extension to obtain global optimum. For hybrid systems, containing continuous evolutions and discrete jumps, and have parametric variations, we have chosen the formalism of impulse differential inclusion as a modeling tool. We took this formalism and identified its components on a mechatronic system. We have developed algorithms for solving impulse differential inclusions for several variable parameters. To view the results, the developed algorithms were implemented in Mathematica. We ended this part by a comparison between our approach and others like those around hybrid automata invariant polyhedron, polygonal differential inclusions and practical algorithm for solving differential inclusion. We showed then some advantages of our approach. In the last part, we organized the different tools used and results obtained to define and refine our approach to tolerancing. We defined the area of the desired operation, the various scenarios that may present, and its intersection with reachable area. We presented a metric tool based on topological Hausdorff distance for the calculation of distances between the different sets. With these elements, we proposed an iterative approach to tolerancing in the state space
Iwancio, Kathleen Marie. „Use of Integral Signature and Hausdorff Distance in Planar Curve Matching“. NCSU, 2009. http://www.lib.ncsu.edu/theses/available/etd-11032009-104907/.
Der volle Inhalt der QuelleCerocchi, Filippo. „Dynamical and Spectral applications of Gromov-Hausdorff Theory“. Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM077/document.
Der volle Inhalt der QuelleThis Ph.D. Thesis is divided into two parts. In the first part we present the barycenter method, a technique which has been introduced by G. Besson, G. Courtois and S. Gallot in 1995, in order to solve the Minimal Entropy conjecture. In Chapter 1 we are interested in the more recent developments of this method, more precisely in the recent extension of the method to the case of manifolds having sectional curvature of variable sign. In Chapters 2 and 3 we shall present some new results whose proofs make use of the barycenter method. The Conjugacy Rigidity problem is the theme of Chapter 2. First we show a general result which provide a comparison between the large scale geometry of the Riemannian universal coverings of two compact manifolds whose geodesic flows are conjugates. Then we shall show how we can apply the latter result and the barycenter method in curvature of variable sign in order to give a new proof of the conjugacy rigidity of flat manifolds. In Chapter 3 we shall give a proof of a spectra comparison theorem for a compact Riemannian manifold which admits a Gromov-Hausdorff-approximation of non zero absolute degree on a fixed compact manifold (X,g') and which has volume almost smaller than the one of the reference manifold. The proof relies on the barycenter method in curvature of variable sign and on iterated Sobolev inequalities. We underline that it is an approximation result (and not just a convergence result) and that no curvature assumptions are made or inferred on (Y,g). The second part of the Thesis consists of a single chapter. In this chapter we prove a Margulis Lemma without curvature assumptions for Riemannian manifolds having decomposable 2-torsionless fundamental group. We shall give also a proof of a universal lower bound for the homotopy systole of compact Riemannian manifolds having bounded volume entropy and diameter, and decomposable torsionless fundamental group. As a consequence of the latter result we shall deduce a Precompactness and Finiteness theorem and a Volume estimate without curvature assumptions
Almuraysil, Norah Abdullatif. „MEASURING CONVEXITY OF A SET“. Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1491496062145907.
Der volle Inhalt der QuelleSURIANO, LUCA. „A Quantum distance for noncommutative measure spaces and an application to quantum field theory“. Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2010. http://hdl.handle.net/2108/1326.
Der volle Inhalt der QuelleIn the first part of this dissertation, we study a pointed version of Rieffel's quantum Gromov-Hausdorff topology for compact quantum metric spaces (i.e, order-unit spaces with a Lipschitz-like seminorm inducing a distance on the space of positive normalized linear functionals which metrizes the w*-topology). In particular, in analogy with Gromov's notion of metric tangent cone at a point of an (abstract) proper metric space, we propose a similar construction for (compact) quantum metric spaces, based on a suitable procedure of rescaling the Lipschitz seminorm on a given quantum metric space. As a result, we get a quantum analogue of the Gromov tangent cone, which extends the classical (say, commutative) construction. As a case study, we apply this procedure to the two-dimensional noncommutative torus, and we obtain what we call a noncommutative solenoid. In the second part, we introduce a quantum distance on the set of dual Lip-von Neumann algebras (i.e., vN algebras with a dual Lip-norm which metrizes the w*-topology on bounded subset). As for the other G.-H. distances (classical or quantum), this dual quantum Gromov-Hausdorff (pseudo-)distance turns out to be a true distance on the (Lip-)isometry classes of Lip-vN algebras. We give also a precompactness criterion, relating the limit of a (strongly) uniform sequence of Lip-vN algebras to the (restricted) ultraproduct, over an ultrafilter, of the same sequence. As an application, we apply this construction to the study of the Buchholz-Verch scaling limit theory of a local net of (algebras of) observables in the algebraic quantum field theory framework, showing that the two approaches lead to the same result for the (real scalar) free field model.
Guven, Ayse. „Quantitative perturbation theory for compact operators on a Hilbert space“. Thesis, Queen Mary, University of London, 2016. http://qmro.qmul.ac.uk/xmlui/handle/123456789/23197.
Der volle Inhalt der QuelleRyvkin, Leonie [Verfasser], Maike [Gutachter] Buchin und Carola [Gutachter] Wenk. „On distance measures for polygonal curves bridging between Hausdorff and Fréchet distance / Leonie Ryvkin ; Gutachter: Maike Buchin, Carola Wenk ; Fakultät für Mathematik“. Bochum : Ruhr-Universität Bochum, 2021. http://d-nb.info/1239418930/34.
Der volle Inhalt der QuellePaulin, Frédéric. „Topologie de Gromov équivariante, structures hyperboliques et arbres réels“. Paris 11, 1987. http://www.theses.fr/1987PA112389.
Der volle Inhalt der QuelleSinghal, Kritika. „Geometric Methods for Simplification and Comparison of Data Sets“. The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587253879303425.
Der volle Inhalt der QuelleBücher zum Thema "Hausdorff Distance"
Efficient visual recognition using the Hausdorff distance. Berlin: Springer, 1996.
Den vollen Inhalt der Quelle findenRucklidge, William, Hrsg. Efficient Visual Recognition Using the Hausdorff Distance. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0015091.
Der volle Inhalt der QuelleRucklidge, William. Efficient visual recognition using the Hausdorff distance. Berlin: Springer, 1996.
Den vollen Inhalt der Quelle findenGromov-Hausdorff Distance for Quantum Metric Spaces/Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance. American Mathematical Society, 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Hausdorff Distance"
Sendov, B. „Hausdorff Distance“. In Hausdorff Approximations, 23–48. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0673-0_2.
Der volle Inhalt der QuelleSchimmrigk, Rolf, Steven Duplij, Antoine Van Proeyen, Władysław Marcinek, Gert Roepstorff, Władysław Marcinek, Władysław Marcinek et al. „Gromov–Hausdorff Distance“. In Concise Encyclopedia of Supersymmetry, 179. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_235.
Der volle Inhalt der QuelleAndreev, A. „Hausdorff Distance and Digital Filters“. In ASST ’87 6. Aachener Symposium für Signaltheorie, 384–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-73015-3_72.
Der volle Inhalt der QuelleWang, Jun, und Ying Tan. „Hausdorff Distance with k-Nearest Neighbors“. In Lecture Notes in Computer Science, 272–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31020-1_32.
Der volle Inhalt der QuellePark, Sang-Cheol, und Seong-Whan Lee. „Object Tracking with Probabilistic Hausdorff Distance Matching“. In Lecture Notes in Computer Science, 233–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11538059_25.
Der volle Inhalt der QuelleSchmidt, Frank R., und Yuri Boykov. „Hausdorff Distance Constraint for Multi-surface Segmentation“. In Computer Vision – ECCV 2012, 598–611. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33718-5_43.
Der volle Inhalt der QuelleJesorsky, Oliver, Klaus J. Kirchberg und Robert W. Frischholz. „Robust Face Detection Using the Hausdorff Distance“. In Lecture Notes in Computer Science, 90–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45344-x_14.
Der volle Inhalt der QuelleSuau, Pablo. „Adapting Hausdorff Metrics to Face Detection Systems: A Scale-Normalized Hausdorff Distance Approach“. In Progress in Artificial Intelligence, 76–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11595014_8.
Der volle Inhalt der QuelleKnauer, Christian, Maarten Löffler, Marc Scherfenberg und Thomas Wolle. „The Directed Hausdorff Distance between Imprecise Point Sets“. In Algorithms and Computation, 720–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10631-6_73.
Der volle Inhalt der QuelleAgarwal, Pankaj K., Kyle Fox, Abhinandan Nath, Anastasios Sidiropoulos und Yusu Wang. „Computing the Gromov-Hausdorff Distance for Metric Trees“. In Algorithms and Computation, 529–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48971-0_45.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Hausdorff Distance"
Sudha, N., und Wong Yung Ho Kenny. „Hausdorff Distance for Iris Recognition“. In 2007 IEEE 22nd International Symposium on Intelligent Control. IEEE, 2007. http://dx.doi.org/10.1109/isic.2007.4450956.
Der volle Inhalt der QuelleAouit, Djedjiga Ait, und Abdeldjalil Ouahabi. „Hausdorff Distance Map Classification Using SVM“. In IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics. IEEE, 2006. http://dx.doi.org/10.1109/iecon.2006.347706.
Der volle Inhalt der QuelleChoi, Wai-Pak, Kin-Man Lam und Wan-Chi Siu. „Robust Hausdorff distance for shape matching“. In Electronic Imaging 2002, herausgegeben von C. C. Jay Kuo. SPIE, 2002. http://dx.doi.org/10.1117/12.453123.
Der volle Inhalt der QuelleRobertson, C. „Page similarity and the Hausdorff distance“. In 7th International Conference on Image Processing and its Applications. IEE, 1999. http://dx.doi.org/10.1049/cp:19990425.
Der volle Inhalt der QuelleNiu Li-pi, Jiang Xiu-hua, Zhang Wen-hui und Shi Dong-xin. „Image registration based on Hausdorff distance“. In 2010 International Conference on Networking and Information Technology (ICNIT 2010). IEEE, 2010. http://dx.doi.org/10.1109/icnit.2010.5508517.
Der volle Inhalt der QuelleChen, Shaokang, und Brian C. Lovell. „Feature Space Hausdorff Distance for Face Recognition“. In 2010 20th International Conference on Pattern Recognition (ICPR). IEEE, 2010. http://dx.doi.org/10.1109/icpr.2010.362.
Der volle Inhalt der QuelleChen, Guang, Wen-wei Wang und Qiu-ping Zhu. „A Face Detector Based on Hausdorff Distance“. In 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). IEEE, 2009. http://dx.doi.org/10.1109/wicom.2009.5301895.
Der volle Inhalt der QuelleLi Zhu und Chun-qiang Zhu. „Application of Hausdorff distance in image matching“. In 2014 IEEE Workshop on Electronics, Computer and Applications (IWECA). IEEE, 2014. http://dx.doi.org/10.1109/iweca.2014.6845566.
Der volle Inhalt der QuelleChen, Jinyang, Rangding Wang, Liangxu Liu und Jiatao Song. „Clustering of trajectories based on Hausdorff distance“. In 2011 International Conference on Electronics, Communications and Control (ICECC). IEEE, 2011. http://dx.doi.org/10.1109/icecc.2011.6066483.
Der volle Inhalt der QuelleSevakula, Rahul K., und Nishchal K. Verma. „Fuzzy Support Vector Machine using Hausdorff distance“. In 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2013. http://dx.doi.org/10.1109/fuzz-ieee.2013.6622475.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Hausdorff Distance"
Beauchemin, M., K. P. B. Thomson und G. Edwards. On the Hausdorff distance used for the evaluation of segmentation results. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/219746.
Der volle Inhalt der Quelle