Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Heterogeneous membranes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Heterogeneous membranes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Heterogeneous membranes"
Strzelewicz, Anna, Monika Krasowska und Michał Cieśla. „Lévy Flights Diffusion with Drift in Heterogeneous Membranes“. Membranes 13, Nr. 4 (07.04.2023): 417. http://dx.doi.org/10.3390/membranes13040417.
Der volle Inhalt der QuelleMagnone, Edoardo, Jae Yeon Hwang, Min Chang Shin, Xuelong Zhuang, Jeong In Lee und Jung Hoon Park. „Al2O3-Based Hollow Fiber Membranes Functionalized by Nitrogen-Doped Titanium Dioxide for Photocatalytic Degradation of Ammonia Gas“. Membranes 12, Nr. 7 (06.07.2022): 693. http://dx.doi.org/10.3390/membranes12070693.
Der volle Inhalt der QuelleSeptiawan, Muhammad Ridwan, Dian Permana, Sitti Hadijah Sabarwati, La Ode Ahmad und La Ode Ahmad Nur Ramadhan. „Functionalization of Chitosan with Maleic Anhydride for Proton Exchange Membrane“. Indonesian Journal of Chemistry 18, Nr. 2 (30.05.2018): 313. http://dx.doi.org/10.22146/ijc.33141.
Der volle Inhalt der QuelleHosseini, S. M., Z. Ahmadi, M. Nemati, F. Parvizian und S. S. Madaeni. „Electrodialysis heterogeneous ion exchange membranes modified by SiO2 nanoparticles: fabrication and electrochemical characterization“. Water Science and Technology 73, Nr. 9 (02.02.2016): 2074–84. http://dx.doi.org/10.2166/wst.2016.030.
Der volle Inhalt der QuelleReigada, Ramon. „Electroporation of heterogeneous lipid membranes“. Biochimica et Biophysica Acta (BBA) - Biomembranes 1838, Nr. 3 (März 2014): 814–21. http://dx.doi.org/10.1016/j.bbamem.2013.10.008.
Der volle Inhalt der QuelleZárybnická, Lucie, Eliška Stránská, Kristýna Janegová und Barbora Vydrová. „The effect of 3D printing parameters on electrochemical properties of heterogeneous cation exchange membrane“. Rapid Prototyping Journal 27, Nr. 8 (02.08.2021): 1538–47. http://dx.doi.org/10.1108/rpj-08-2020-0207.
Der volle Inhalt der QuellePolak, Daniel, und Maciej Szwast. „Material and Process Tests of Heterogeneous Membranes Containing ZIF-8, SiO2 and POSS-Ph“. Materials 15, Nr. 18 (17.09.2022): 6455. http://dx.doi.org/10.3390/ma15186455.
Der volle Inhalt der QuelleBejanidze, Irina, Oleksandr Petrov, Volodymyr Pohrebennyk, Tina Kharebava, Nunu Nakashidze, Nato Didmanidze, Nazi Davitadze und Anton Petrov. „Sorption of Organic Electrolytes and Surfactants from Natural Waters by Heterogeneous Membranes“. Applied Sciences 10, Nr. 20 (21.10.2020): 7383. http://dx.doi.org/10.3390/app10207383.
Der volle Inhalt der QuelleStenina, Irina A., und Andrey B. Yaroslavtsev. „Ionic Mobility in Ion-Exchange Membranes“. Membranes 11, Nr. 3 (11.03.2021): 198. http://dx.doi.org/10.3390/membranes11030198.
Der volle Inhalt der QuelleSarapulova, Veronika, Ekaterina Nevakshenova, Kseniia Tsygurina, Valentina Ruleva, Anna Kirichenko und Ksenia Kirichenko. „Short-Term Stability of Electrochemical Properties of Layer-by-Layer Coated Heterogeneous Ion Exchange Membranes“. Membranes 13, Nr. 1 (29.12.2022): 45. http://dx.doi.org/10.3390/membranes13010045.
Der volle Inhalt der QuelleDissertationen zum Thema "Heterogeneous membranes"
Turner, Josephine. „Heterogeneous polyelectrolyte gel membranes, effect of morphology on stimulus-responsive permeation control“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq63593.pdf.
Der volle Inhalt der QuelleJohns, Brian Douglas. „Experimental verification of pointwise identification method for capturing heterogeneous properties in membranes“. Thesis, University of Iowa, 2010. https://ir.uiowa.edu/etd/824.
Der volle Inhalt der QuelleFaaland, Sonia. „Heterogeneous ceramic interfaces in solid oxide fuel cells and dense oxygen permeable membranes“. Doctoral thesis, Norwegian University of Science and Technology, Department of Chemistry, 2000. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-53.
Der volle Inhalt der QuelleSolid oxide fuel cells and oxygen permeable membranes have received considerable attention during the last decade due to the increasing demand for electrical energy and easily transportable fuels combined with the requirement of low emission of CO2. This work concentrates on the stability of ceramic interfaces in general, and more specifically to heterophase solid state interfaces related to solid oxide fuel cells and oxygen permeable membranes. Reaction mechanisms are discussed and requirements and properties of suitable materials are determined. This thesis consists of three parts: 1) Structure of Ca-substituted lanthanum manganite (Paper I), 2) Reactions between cathode and electrolyte for SOFC applications (Papers II-IV) and 3) Chemical and mechanical aspects of sealing dense oxygen permeable membranes (Papers V and VI).
Tichy, Robin Sarah. „Mechanisms and stability of oxide-ion transport in homogenous and heterogeneous ceramic membranes /“. Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3008457.
Der volle Inhalt der QuelleZhao, Xuefeng. „Pointwise identification of elastic properties in nonlinear heterogeneous membranes, and application to soft tissues“. Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/222.
Der volle Inhalt der QuellePandžić, Elvis. „Measurement of protein transport and confinement in heterogeneous membranes by k-space image correlation spectroscopy“. Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116842.
Der volle Inhalt der QuelleLa thèse qui suit est a propos de l'adaptation de la technique de la spectroscopie par la corrélation des images dans l'espace de Fourier, appelle kICS. La nouveauté consiste en utilisation de kICS pour analyser les séries temporelles d'images fluorescentes afin de caractériser la diffusion des particules en présence des membranes hétérogénes, composées de micro-domaines.Tout d'abord, une parallèle est exposée entre l'analyse fondée sur kICS pro- posé ci-dessus et d'autres techniques de microscopie à fluorescence existantes et utilisées dans l'étude des membranes hétérogénes. Ensuite, on expose le développement de la théorie de kICS dans les cas de la diffusion des particules fluorescentes dans un espace hétérogène bidimensionnel (2D). Les deux hétérogénéités membranaires possibles, micro-domaines lipidiques isolés et le réseau de l'actine proximale, sont considérés séparément. Les modèles émergents suggèrent que la fonction de corrélation de kICS doit être caractérisé par une somme de deux Gaussiennes dans le cas de la dynamique des particules en présence de micro-domaines isolés. Ces deux éléments, appelés 'rapide' et 'lent', représentent les composantes dynamiques a deux échelles d'espace différentes. La rapide est associé à la décroissance rapide de la fonction de corrélation de kICS à petites fréquences spatiales dues au mouvement des particules sur de grandes échelles spatiales. La composante lente réfère au mouvement des particules confinées à des petites échelles spatiales, observées sur de grandes fréquences spatiales de kICS. D'autre part, la fonction de corrélation de kICS due au confinement par le réseau du cytosquelette peut être caractérise par unique décroissance Gaussienne. Ces modèles suggèrent que les exposants et les amplitudes obtenus par la caractérisation de la fonction kICS dépend des paramètres caractéristiques du système tels que les coefficients de diffusion à l'extérieur et à l'intérieur de domaines, les taux de migration de particules vers intérieur ou extérieur de micro-domaines ou des tailles de porosités du réseaux du cytosquelette.Les études systématiques par les simulations des scénarios différents de confinement et leurs effets sur la fonction de corrélation de kICS ont été explorés. La caractérisation des données simulées suggèrent que les fonctions de corrélation ont des caractéristiques qui dépendent de confinement et les propriétés spécifiques, tels que la dynamique des populations lents et rapides et la tailles effective de micro-domaines. La caractérisation des scénarios de confinement différents, représente les liens entre les propriétés apparentes mesurées de confinement, et un ensemble de paramètres définissant hétérogénéité. Nous explorons les limites pour lesquelles des effets de confinement ne sont pas observées dans la fonction de corrélation kICS. Les éventuelles erreurs systématiques dans les valeurs des paramètres extraits à cause du bruit de fond est discuté avec des possibles solutions. Finalement, nous utilisons l'analyse afin d'explorer la dynamique de confinement de la protéine ancrée à GPI-GFP dans la membrane plasmique basale des cellules COS-7. Nous explorons une approche nouvelle de la conjugaison entre le GPI-GFP et les anti-GFP-Alexa594 et imagé par la microscopie TIRF. Les cellules ont été exposées à des traitements enzymatiques, par Coase et SMase, afin de perturber domaines membranaires et changer la dynamique de confinement de GPI-GFP. Les réactions enzymatiques augmentent la mobilité et la taille effective des domaines de GPI-GFP. Nous attribuons cela à la conversion des constituants des domaines, le cholestérol et la sphingomyéline, par les réactions enzymatiques, ce qui conduit aux plus grandes et moins étanches domaines membranaires.
Pampel, André. „Pulsed field gradient NMR in combination with magic angle spinning - new possibilities for studying diffusion in lipid membranes and heterogeneous materials“. Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-197016.
Der volle Inhalt der QuellePampel, André. „Pulsed field gradient NMR in combination with magic angle spinning - new possibilities for studying diffusion in lipid membranes and heterogeneous materials“. Diffusion fundamentals 2 (2005) 128, S. 1-2, 2005. https://ul.qucosa.de/id/qucosa%3A14470.
Der volle Inhalt der QuelleAbdalla, B. K. „Heterogeneous modelling of fixed bed and fluidized bed reactors without and with selected membranes for the catalytic dehydrogenation of ethylbenzene to styrene“. Thesis, University of Salford, 1993. http://usir.salford.ac.uk/2029/.
Der volle Inhalt der QuelleBesson, Arthur. „Etude de polymères pour l'utilisation en membranes de piles à combustible“. Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENI070/document.
Der volle Inhalt der QuelleFuel cells are an ever-expanding technology in the field of automotive transport. The polymer membranesthat are currently the most widely used are Nafion-based membranes. Their weakest point is their drastic lossof performances beyond the threshold of 80°C, where the membranes fails and water cannot ensure protonconduction anymore. The EUBECELLproject sets to achieve making a fuel cell system functioning above120°C and using ethanol as a fuel. This thesis is part of the project and focus on elaborating new protonconductingpolymer membranes. Two main ways are explored: improving the performances of Nafion athigh temperature and replacing Nafion with conductivity-added high-performance polymers.Improving Nafion's performances is achieved by adding proton conducting ionic liquids (PCILs), productsthat have a proton conductivity that adds to Nafion's own. A first PCIL is synthesized, characterized and thenadded to Nafion, the resulting membranes' performances then measured. The encouraging results that weobtain makes us synthesize more PCILs, from the same amine than the first, varying the counter-ion. OtherNafion-PCIL mixes are made and then characterized.The high-performance polymer investigated for replacing Nafion are, first, sulfonated polysulfones.Polysulfones are high-temperature resistant polymers and sulfonation gives them conductivity. To keep betterproperties after the sulfonation, we proceed to extrude the films before sulfonating them. We elaborate anheterogeneous sulfonation protocol for them. The resulting membranes are then characterized and theirperformances measured. Second, we work on macroporous membranes, with high mechanical strength,which we fill with the PCILs that we previously used. The membranes are then also characterized and theirperformances measured
Bücher zum Thema "Heterogeneous membranes"
Turner, Josephine. Heterogeneous polyelectrolyte gel membranes: Effect of morphology on stimuli-responsive permeation control. 2001.
Den vollen Inhalt der Quelle findenDoraiswamy, L. K. Organic Synthesis Engineering. Oxford University Press, 2001. http://dx.doi.org/10.1093/oso/9780195096897.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Heterogeneous membranes"
Anderson, M. A., F. Tiscareño-Lechuga, Q. Xu und C. G. Hill. „Catalytic Ceramic Membranes and Membrane Reactors“. In Novel Materials in Heterogeneous Catalysis, 198–215. Washington, DC: American Chemical Society, 1990. http://dx.doi.org/10.1021/bk-1990-0437.ch019.
Der volle Inhalt der QuelleHiga, Mitsuru. „Heterogeneous Ion-Exchange Membranes“. In Encyclopedia of Membranes, 915–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_278.
Der volle Inhalt der QuelleHiga, Mitsuru. „Heterogeneous Ion-Exchange Membranes“. In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_278-1.
Der volle Inhalt der QuelleMarguet, Didier, und Laurence Salomé. „Lateral Diffusion in Heterogeneous Cell Membranes“. In Physics of Biological Membranes, 169–89. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00630-3_7.
Der volle Inhalt der QuelleLeysen, R., W. Doyen, R. Proost, Ph Vermeiren, W. Adriansens und R. Deknock. „THE USE OF HETEROGENEOUS MEMBRANES IN ELECTROCHEMICAL SYSTEMS“. In Synthetic Polymeric Membranes, herausgegeben von Blahoslav Sedláček und Jaroslav Kahovec, 89–100. Berlin, Boston: De Gruyter, 1987. http://dx.doi.org/10.1515/9783110867374-011.
Der volle Inhalt der QuelleŚlęzak, A., B. Turczyriski und Z. Nawrat. „IRREVERSIBLE THERMODYNAMICS MODEL EQUATIONS OF THE TRANSPORT ACROSS VERTICAL-MOUNTED MEMBRANE IN MULTICOMFONENT, NON-IONIC AND HETEROGENEOUS SOLUTIONS“. In Synthetic Polymeric Membranes, herausgegeben von Blahoslav Sedláček und Jaroslav Kahovec, 445–52. Berlin, Boston: De Gruyter, 1987. http://dx.doi.org/10.1515/9783110867374-044.
Der volle Inhalt der QuelleLevine, Zachary A. „Effects of Heterogeneous Membranes and Electrolytes on Electropore Formation“. In Handbook of Electroporation, 1–22. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26779-1_87-1.
Der volle Inhalt der QuelleSchwille, Petra, Nicoletta Kahya und Kirsten Bacia. „Protein and Lipid Partitioning in Locally Heterogeneous Model Membranes“. In Protein-Lipid Interactions, 337–65. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606769.ch14.
Der volle Inhalt der QuelleLevine, Zachary A. „Effects of Heterogeneous Membranes and Electrolytes on Electropore Formation“. In Handbook of Electroporation, 133–53. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-32886-7_87.
Der volle Inhalt der QuelleŠachl, Radek, und Lennart B. Å. Johansson. „Heterogeneous Lipid Distributions in Membranes as Revealed by Electronic Energy Transfer“. In Reviews in Fluorescence 2015, 171–87. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24609-3_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Heterogeneous membranes"
Ghaffar, Mehmood, Niklas Biere, Daniel Jäger, Karsten Klein, Falk Schreiber, Olaf Kruse und Björn Sommer. „3D Modelling and Visualisation of Heterogeneous Cell Membranes in Blender“. In VINCI '18: The 11th International Symposium on Visual Information Communication and Interaction. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3231622.3231639.
Der volle Inhalt der QuelleTabouillot, Tristan, Hari S. Muddana und Peter J. Butler. „Shear Stress Induces Time- and Domain-Dependent Changes in Lipid Dynamics of Endothelial Cell Membranes“. In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206882.
Der volle Inhalt der QuelleDehghannasiri, Razi, Reza Pourabolghasem, Ali Asghar Eftekhar und Ali Adibi. „GHz Heterogeneous Phononic Crystal Slab Resonators“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52765.
Der volle Inhalt der QuelleAhn, Geun Ho, Alexander D. White, Kevin Crust, Chris Andersson, Jakob Grzesik, Kasper Van Gasse, Giovanni Scuri, Harold Y. Hwang und Jelena Vučković. „Silicon nitride electro-optic modulators enabled by heterogeneous integration of barium titanate films“. In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sf1p.7.
Der volle Inhalt der QuelleDe Groote, A., P. Cardile, A. Z. Subramanian, M. Tassaert, D. Delbeke, R. Baets und G. Roelkens. „A waveguide coupled LED on SOI by heterogeneous integration of InP-based membranes“. In 2015 IEEE 12th International Conference on Group IV Photonics (GFP). IEEE, 2015. http://dx.doi.org/10.1109/group4.2015.7305939.
Der volle Inhalt der QuelleKim, Jeehwan. „Advanced Heterogeneous Integration Enabled by 3D Freestanding Membranes—From Material Growths to Applications“. In MRS Fall Meeting 2022. US DOE, 2022. http://dx.doi.org/10.2172/1961416.
Der volle Inhalt der QuelleKim, Jeehwan. „Advanced Heterogeneous Integration Enabled by 3D Freestanding Membranes—From Material Growths to Applications“. In Materials Research Society, Boston, Nov 2022. US DOE, 2022. http://dx.doi.org/10.2172/1923272.
Der volle Inhalt der QuelleMartins, N. C., L. B. Rodrigues, F. T. do Nascimento, G. M. da Silveira, J. F. Corte, M. V. Flach, M. A. S. Rodrigues, F. Celso, V. D. Jahno und R. M. de Martins. „Evaluation of the influence of method preparation in properties of heterogeneous ion exchange membranes“. In WASTE MANAGEMENT 2016. Southampton UK: WIT Press, 2016. http://dx.doi.org/10.2495/wm160351.
Der volle Inhalt der QuelleShadmani, Atefeh, Rodrigo Thomas, Zhe Liu, Nicolas Volet, Martijn J. R. Heck, Sven Scholz, Andreas D. Wieck, Arne Ludwig, Peter Lodahl und Leonardo Midolo. „Integration of GaAs waveguides with quantum dots on Silicon substrates for quantum photonic circuits“. In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ff4j.6.
Der volle Inhalt der QuelleElturki, Mukhtar, und Abdulmohsin Imqam. „An Experimental Study Investigating the Impact of Miscible and Immiscible Nitrogen Injection on Asphaltene Instability in Nano Shale Pore Structure“. In SPE International Conference on Oilfield Chemistry. SPE, 2021. http://dx.doi.org/10.2118/204294-ms.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Heterogeneous membranes"
Kearney, M., V. Kochergin, R. Hess, T. Foust, R. Herbst und N. Mann. Industrial Membrane Filtration and Short-bed Fractal Separation Systems for Separating Monomers from Heterogeneous Plant Material. Office of Scientific and Technical Information (OSTI), März 2005. http://dx.doi.org/10.2172/838864.
Der volle Inhalt der Quelle