Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „HIGH GAIN LOW POWER“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "HIGH GAIN LOW POWER" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "HIGH GAIN LOW POWER"
Astolfi, Daniele, Lorenzo Marconi, Laurent Praly und Andrew R. Teel. „Low-power peaking-free high-gain observers“. Automatica 98 (Dezember 2018): 169–79. http://dx.doi.org/10.1016/j.automatica.2018.09.009.
Der volle Inhalt der QuelleJain, Archita, und Anshu Gupta. „Low Power and High Gain Operational Transconductance Amplifier“. International Journal of Computer Applications 144, Nr. 5 (17.06.2016): 30–33. http://dx.doi.org/10.5120/ijca2016910278.
Der volle Inhalt der QuelleDurgam, Rajesh, S. Tamil und Nikhil Raj. „Design of Low Voltage Low Power High Gain Operational Transconductance Amplifier“. U.Porto Journal of Engineering 7, Nr. 4 (26.11.2021): 103–10. http://dx.doi.org/10.24840/2183-6493_007.004_0008.
Der volle Inhalt der QuelleWei, Binbin, und Jinguang Jiang. „A low power high gain gain-controlled LNA + mixer for GNSS receivers“. Journal of Semiconductors 34, Nr. 11 (November 2013): 115002. http://dx.doi.org/10.1088/1674-4926/34/11/115002.
Der volle Inhalt der QuelleKim, Shin-Gon, Habib Rastegar, Min Yoon, Chul-Woo Park, Kyoungyong Park, Sookyoung Joung und Jee-Youl Ryu. „High-Gain and Low-Power Power Amplifier for 24-GHz Automotive Radars“. International Journal of Smart Home 9, Nr. 2 (28.02.2015): 27–34. http://dx.doi.org/10.14257/ijsh.2015.9.2.03.
Der volle Inhalt der QuelleQiurong He und Milton Feng. „Low-power, high-gain, and high-linearity SiGe BiCMOS wide-band low-noise amplifier“. IEEE Journal of Solid-State Circuits 39, Nr. 6 (Juni 2004): 956–59. http://dx.doi.org/10.1109/jssc.2004.827801.
Der volle Inhalt der QuelleFarzamiyan, Amir Hossein, und Ahmad Hakimi. „Low-power CMOS distributed amplifier using new cascade gain cell for high and low gain modes“. Analog Integrated Circuits and Signal Processing 74, Nr. 2 (30.11.2012): 453–60. http://dx.doi.org/10.1007/s10470-012-9990-9.
Der volle Inhalt der QuelleHuang, Shou-Chien, Cheng-Hsiu Tsai und Yue-Ming Hsin. „Low power consumption and high gain ultra-wide-band low noise amplifier“. Microwave and Optical Technology Letters 51, Nr. 2 (23.12.2008): 382–84. http://dx.doi.org/10.1002/mop.24047.
Der volle Inhalt der QuelleCui, Lin Hai, Rui Xu, Zhan Peng Jiang und Chang Chun Dong. „Design of a Low-Voltage Low-Power CMOS Operational Amplifier“. Applied Mechanics and Materials 380-384 (August 2013): 3283–86. http://dx.doi.org/10.4028/www.scientific.net/amm.380-384.3283.
Der volle Inhalt der QuelleKarimi, Gholamreza, Saeed Gholami und Saeed Roshani. „A linear high-gain and low-power CMOS UWB mixer“. International Journal of Electronics Letters 1, Nr. 4 (Dezember 2013): 159–67. http://dx.doi.org/10.1080/21681724.2013.829997.
Der volle Inhalt der QuelleDissertationen zum Thema "HIGH GAIN LOW POWER"
Li, Lisha. „High Gain Low Power Operational Amplifier Design and Compensation Techniques“. Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1701.pdf.
Der volle Inhalt der QuelleSaidev, Sriram. „Design of a Digitally Enhanced, Low Power, High Gain, High Linearity CMOS Mixer and CppSim Evaluation“. The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461262622.
Der volle Inhalt der QuelleChen, Lin. „A low power, high dynamic-range, broadband variable gain amplifier for an ultra wideband receiver“. Texas A&M University, 2003. http://hdl.handle.net/1969.1/5843.
Der volle Inhalt der QuelleSingh, Rishi Pratap. „A High-Gain, Low-Power CMOS Operational Amplifier Using Composite Cascode Stage in the Subthreshold Region“. BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2510.
Der volle Inhalt der QuelleCahill, Kurtis Daniel. „Subthreshold Op Amp Design Based on the Conventional Cascode Stage“. BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3611.
Der volle Inhalt der QuelleSaini, Kanika. „Linearity Enhancement of High Power GaN HEMT Amplifier Circuits“. Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/94361.
Der volle Inhalt der QuelleDoctor of Philosophy
Power amplifiers (PAs) and Low Noise Amplifiers (LNAs) form the front end of the Radio Frequency (RF) transceiver systems. With the advent of complex modulation schemes, it is becoming imperative to improve their linearity. Through this dissertation, we propose a technique for improving the linearity of amplifier circuits used for communication systems. Meanwhile, Gallium Nitride (GaN) is becoming a technology of choice for high-power amplifier circuits due to its higher power handling capability and higher breakdown voltage compared with Gallium Arsenide (GaAs), Silicon Germanium (SiGe) and Complementary Metal-Oxide-Semiconductor (CMOS) technologies. A circuit design technique of using multiple parallel GaN FETs is presented. In this technique, the multiple parallel FETs have independently controllable gate voltages. Compared to a large single FET, using multiple FETs and biasing them individually helps to improve the linearity through the cancellation of nonlinear distortion components. Experimental results show the highest linearity improvement compared with the other state-of-the-art linearization schemes. The technique demonstrated is the first time implementation in GaN technology. The technique is a simple and cost-effective solution for improving the linearity of the amplifier circuits. Applications include base station amplifiers, mobile handsets, radars, satellite communication, etc.
Säll, Erik. „Design of a Low Power, High Performance Track-and-Hold Circuit in a 0.18µm CMOS Technology“. Thesis, Linköping University, Department of Electrical Engineering, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1353.
Der volle Inhalt der QuelleThis master thesis describes the design of a track-and-hold (T&H) circuit with 10bit resolution, 80MS/s and 30MHz bandwidth. It is designed in a 0.18µm CMOS process with a supply voltage of 1.8 Volt. The circuit is supposed to work together with a 10bit pipelined analog to digital converter.
A switched capacitor topology is used for the T&H circuit and the amplifier is a folded cascode OTA with regulated cascode. The switches used are of transmission gate type.
The thesis presents the design decisions, design phase and the theory needed to understand the design decisions and the considerations in the design phase.
The results are based on circuit level SPICE simulations in Cadence with foundry provided BSIM3 transistor models. They show that the circuit has 10bit resolution and 7.6mW power consumption, for the worst-case frequency of 30MHz. The requirements on the dynamic performance are all fulfilled, most of them with large margins.
Waddel, Taylor Matt. „A Design Basis for Composite Cascode Stages Operating in the Subthreshold/Weak Inversion Regions“. BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/2934.
Der volle Inhalt der QuelleCiarkowski, Timothy A. „Low Impurity Content GaN Prepared via OMVPE for Use in Power Electronic Devices: Connection Between Growth Rate, Ammonia Flow, and Impurity Incorporation“. Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/94551.
Der volle Inhalt der QuelleDoctor of Philosophy
GaN is a compound semiconductor which has the potential to revolutionize the high power electronics industry, enabling new applications and energy savings due to its inherent material properties. However, material quality and purity requires improvement. This improvement can be accomplished by reducing contamination and growing under extreme conditions. Newly available bulk substrates with low defects allow for better study of material properties. In addition, very thick films can be grown without cracking on these substrates due to exact lattice and thermal expansion coefficient match. Through chemical and electrical measurements, this work aims to find optimal growth conditions for high purity GaN without a severe impact on growth rate, which is an important factor from an industry standpoint. The proposed thicknesses of these devices are on the order of one hundred microns and requires tight control of impurities.
Hasegawa, Naoki. „Integral Study of GaN Amplifiers and Antenna Technique for High Power Microwave Transmission“. Kyoto University, 2018. http://hdl.handle.net/2433/232041.
Der volle Inhalt der QuelleBücher zum Thema "HIGH GAIN LOW POWER"
Ahuja, Sumit, Avinash Lakshminarayana und Sandeep Kumar Shukla. Low Power Design with High-Level Power Estimation and Power-Aware Synthesis. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0872-7.
Der volle Inhalt der QuelleAvinash, Lakshminarayana, und Shukla Sandeep K, Hrsg. Low power design with high-level power estimation and power-aware synthesis. New York: Springer, 2012.
Den vollen Inhalt der Quelle findenservice), SpringerLink (Online, Hrsg. High-efficient low-cost photovoltaics: Recent developments. Berlin: Springer, 2009.
Den vollen Inhalt der Quelle findenZjajo, Amir, und José Pineda de Gyvez. Low-Power High-Resolution Analog to Digital Converters. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-9725-5.
Der volle Inhalt der QuelleYoo, Hoi-Jun. Low-power NoC for high-performance SoC design. Boca Raton, Fl: Taylor & Francis, 2008.
Den vollen Inhalt der Quelle findenYoo, Hoi-Jun. Low-power NoC for high-performace SoC design. Boca Raton, Fl: Taylor & Francis, 2008.
Den vollen Inhalt der Quelle findenYoo, Hoi-Jun. Low-Power NoC for High-Performance SoC Design. London: Taylor and Francis, 2008.
Den vollen Inhalt der Quelle findenWilhelm, Schmid. High on low: Harnessing the power of unhappiness. New York: Upper West Side Philosophers, Inc., 2014.
Den vollen Inhalt der Quelle findenKiameh, Philip. Power generation handbook: Fundamentals of low-emission, high-efficiency power plant operation. 2. Aufl. New York: McGraw-Hill, 2012.
Den vollen Inhalt der Quelle findenMeinerzhagen, Pascal, Adam Teman, Robert Giterman, Noa Edri, Andreas Burg und Alexander Fish. Gain-Cell Embedded DRAMs for Low-Power VLSI Systems-on-Chip. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-60402-2.
Der volle Inhalt der QuelleBuchteile zum Thema "HIGH GAIN LOW POWER"
Astolfi, Daniele, und Lorenzo Marconi. „Low-Power High-Gain Observers“. In Encyclopedia of Systems and Control, 1–8. London: Springer London, 2019. http://dx.doi.org/10.1007/978-1-4471-5102-9_100070-1.
Der volle Inhalt der QuelleAstolfi, Daniele, und Lorenzo Marconi. „Low-Power High-Gain Observers“. In Encyclopedia of Systems and Control, 1158–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-44184-5_100070.
Der volle Inhalt der QuelleVerma, Vivek, und Chetan D. Parikh. „A Low-Power Wideband High Dynamic Range Single-Stage Variable Gain Amplifier“. In Communications in Computer and Information Science, 19–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-42024-5_3.
Der volle Inhalt der QuelleLee, Hyung Seok, Martin Domeij, C. M. Zetterling und Mikael Östling. „4H-SiC Power BJTs with High Current Gain and Low On-Resistance“. In Materials Science Forum, 767–70. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-442-1.767.
Der volle Inhalt der QuelleOmari, Fouad, Boutaina Benhmimou, Niamat Hussain, Rachid Ahl Laamara, Sandeep Kumar Arora, Josep M. Guerrero und Mohamed El Bakkali. „UM5 of Rabat to Deep Space: Ultra-Wide Band and High Gain Only-Metal Fabry–Perot Antenna for Interplanetary CubeSats in IoT Infrastructure“. In Low Power Architectures for IoT Applications, 153–64. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0639-0_8.
Der volle Inhalt der QuelleArul Murugan, C., B. Banuselvasaraswathy und K. Gayathree. „High-Voltage Gain CMOS Charge Pump at Subthreshold Operation Regime for Low Power Applications“. In Lecture Notes in Networks and Systems, 417–26. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3765-9_44.
Der volle Inhalt der QuelleSingh, Karandeep, Vishal Mehta und Mandeep Singh. „Physical Design of Two Stage Ultra Low Power, High Gain Cmos OP-AMP for Portable Device Applications“. In Communications in Computer and Information Science, 730–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36321-4_68.
Der volle Inhalt der QuelleBansal, Gaurav, und Abhay Chaturvedi. „A 3.432 GHz Low-Power High-Gain Down-Conversion Gilbert Cell Mixer in 0.18 μm CMOS Technology for UWB Application“. In Intelligent Communication and Computational Technologies, 247–55. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5523-2_23.
Der volle Inhalt der QuelleSubramanyam, Avvaru, und R. V. S. Satyanarayana. „Improved Conversion Gain with High SFDR and Highly Linear RF Mixer Using Inductive Gate Biasing Technique for Low Power WAS and Radio LAN Applications“. In Lecture Notes in Electrical Engineering, 37–49. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8865-3_4.
Der volle Inhalt der QuelleJensen, C. „Pulsed Dye Laser Gain Analysis and Amplifier Design“. In High-Power Dye Lasers, 45–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-540-47385-5_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "HIGH GAIN LOW POWER"
Chauhan, Samiksha Singh, Akash Bahetra, Layak Singh Yadav und Aman Singh Chandan. „Ultra Low Power High Gain High Speed OTA“. In 2019 IEEE Conference on Information and Communication Technology (CICT). IEEE, 2019. http://dx.doi.org/10.1109/cict48419.2019.9066189.
Der volle Inhalt der QuelleShen, Jia'en, Yi Zhang und Yan Zhou. „A High-Gain Low-Power Low-Noise CMOS Transconductance Amplifier“. In 2023 IEEE 5th International Conference on Power, Intelligent Computing and Systems (ICPICS). IEEE, 2023. http://dx.doi.org/10.1109/icpics58376.2023.10235427.
Der volle Inhalt der QuelleKackar, Tripti, Shruti Suman und P. K. Ghosh. „Design of high gain low power operational amplifier“. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE, 2016. http://dx.doi.org/10.1109/iceeot.2016.7755310.
Der volle Inhalt der QuelleKumar, Ravi Ranjan, Supriya Sharma, Kulbhushan Sharma und Avinash Sharma. „Design of Low-Power High-Gain Transimpedance Amplifier“. In 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT). IEEE, 2023. http://dx.doi.org/10.1109/icssit55814.2023.10060885.
Der volle Inhalt der QuelleVerma, P. K., und Priyanka Jain. „A low power high gain low noise amplifier for wireless applications“. In 2015 Communication, Control and Intelligent Systems (CCIS). IEEE, 2015. http://dx.doi.org/10.1109/ccintels.2015.7437941.
Der volle Inhalt der QuelleHadipour, Kambiz, und Andreas Stelzer. „A low power high gain-bandwidth E-band LNA“. In 2016 11th European Microwave Integrated Circuits Conference (EuMIC). IEEE, 2016. http://dx.doi.org/10.1109/eumic.2016.7777492.
Der volle Inhalt der QuelleAhmed, Javeria, Matthieu Fruchard, Estelle Courtial und Youssoufi Toure. „Low-power High Gain Observers for Wake Flow Rebuild“. In 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020. http://dx.doi.org/10.1109/cdc42340.2020.9304507.
Der volle Inhalt der QuelleSarbishaei, H., T. Kahookar Toosi, E. Zhian Tabasy und R. Lotfi. „A high-gain high-speed low-power class AB operational amplifier“. In 48th Midwest Symposium on Circuits and Systems, 2005. IEEE, 2005. http://dx.doi.org/10.1109/mwscas.2005.1594091.
Der volle Inhalt der QuelleMa, Bob Yintat, Jonathan B. Hacker, Joshua Bergman, Peter Chen, Gerard Sullivan, Gabor Nagy und B. Brar. „Ultra-Low-Power Wideband High Gain InAs/AlSb HEMT Low-Noise Amplifiers“. In 2006 IEEE MTT-S International Microwave Symposium Digest. IEEE, 2006. http://dx.doi.org/10.1109/mwsym.2006.249931.
Der volle Inhalt der QuelleTzuk, Yitshak, Yaakov Glick, Michael M. Tilleman und Alon Kaufman. „Compact ultrahigh-gain multipass Nd:YAG amplifier with a low passive reflection phase-conjugate mirror“. In Optoelectronics and High-Power Lasers & Applications, herausgegeben von Metin S. Mangir. SPIE, 1998. http://dx.doi.org/10.1117/12.308345.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "HIGH GAIN LOW POWER"
Colson, W. Theory for high gain, high power free electron lasers. Office of Scientific and Technical Information (OSTI), Januar 1989. http://dx.doi.org/10.2172/5477588.
Der volle Inhalt der QuelleMazumder, Sudip K. Optically-gated Non-latched High Gain Power Device. Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada493165.
Der volle Inhalt der QuelleColson, W. Theoretical simulations of the synchrotron instability in high gain, high power free electron lasers. Office of Scientific and Technical Information (OSTI), Januar 1985. http://dx.doi.org/10.2172/6812860.
Der volle Inhalt der QuelleJewell, Jack L. Low-Resistance, High-Power-Efficiency, Vertical Cavity Microlasers. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada291493.
Der volle Inhalt der QuelleYu, Chung. High Gain, Low Noise and Broadband Raman and Brillouin Fiber Optic Amplifiers, Channel Selectors and Switches. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada301545.
Der volle Inhalt der QuellePoelker, M., und J. Hansknecht. A high power gain switched diode laser oscillator and amplifier for the CEBAF polarized electron injector. Office of Scientific and Technical Information (OSTI), Dezember 1996. http://dx.doi.org/10.2172/563274.
Der volle Inhalt der QuelleFallahi, Mahmoud. Compact, High-Power, Low-Cost 295 nm DUV Laser by Harmonic Conversion of High Power VECSELs. Fort Belvoir, VA: Defense Technical Information Center, Mai 2011. http://dx.doi.org/10.21236/ada546743.
Der volle Inhalt der QuelleLawrence, William R. Nanomechanical Devices for High Speed and Low-Power Electronics. Fort Belvoir, VA: Defense Technical Information Center, Juni 2001. http://dx.doi.org/10.21236/ada394851.
Der volle Inhalt der QuelleParhi, Keshab K. High-Speed and Low-Power VLSI Error Control Coders. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada426960.
Der volle Inhalt der QuelleBattaglia, Vincent. Low-Cost High-Power Anodes for Electric Vehicle Batteries. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1608347.
Der volle Inhalt der Quelle