Zeitschriftenartikel zum Thema „Histopathological tumor segmentation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Histopathological tumor segmentation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Elidrissi, Sofyan, Ikram Ben Abdel Ouahab, Mohammed Bouhorma, and Fatiha Elouaai. "Unveiling the Clinical Significance of Microsatellite Instability in Colorectal Cancer: Deep Learning and the Segment Anything Model for Accurate Segmentation and Classification." International Journal of Online and Biomedical Engineering (iJOE) 21, no. 06 (2025): 97–110. https://doi.org/10.3991/ijoe.v21i06.54491.
Der volle Inhalt der QuelleLiu, Yiqing, Qiming He, Hufei Duan, Huijuan Shi, Anjia Han, and Yonghong He. "Using Sparse Patch Annotation for Tumor Segmentation in Histopathological Images." Sensors 22, no. 16 (2022): 6053. http://dx.doi.org/10.3390/s22166053.
Der volle Inhalt der QuelleZadeh Shirazi, Amin, Eric Fornaciari, Mark D. McDonnell, et al. "The Application of Deep Convolutional Neural Networks to Brain Cancer Images: A Survey." Journal of Personalized Medicine 10, no. 4 (2020): 224. http://dx.doi.org/10.3390/jpm10040224.
Der volle Inhalt der Quellevan der Kamp, Ananda, Thomas de Bel, Ludo van Alst, et al. "Automated Deep Learning-Based Classification of Wilms Tumor Histopathology." Cancers 15, no. 9 (2023): 2656. http://dx.doi.org/10.3390/cancers15092656.
Der volle Inhalt der QuellePark, Youngjae, Jinhee Park, and Gil-Jin Jang. "Efficient Perineural Invasion Detection of Histopathological Images Using U-Net." Electronics 11, no. 10 (2022): 1649. http://dx.doi.org/10.3390/electronics11101649.
Der volle Inhalt der QuelleSun, Yibao, Zhaoyang Xu, Yihao Guo, et al. "Scale-Adaptive viable tumor burden estimation via histopathological microscopy image segmentation." Computers in Biology and Medicine 189 (May 2025): 109915. https://doi.org/10.1016/j.compbiomed.2025.109915.
Der volle Inhalt der QuelleMutkule, Prasad R., Nilesh P. Sable, Parikshit N. Mahalle, and Gitanjali R. Shinde. "Histopathological parameter and brain tumor mapping using distributed optimizer tuned explainable AI classifier." Journal of Autonomous Intelligence 7, no. 5 (2024): 1617. http://dx.doi.org/10.32629/jai.v7i5.1617.
Der volle Inhalt der QuelleAlthubaity, DaifAllah D., Faisal Fahad Alotaibi, Abdalla Mohamed Ahmed Osman, et al. "Automated Lung Cancer Segmentation in Tissue Micro Array Analysis Histopathological Images Using a Prototype of Computer-Assisted Diagnosis." Journal of Personalized Medicine 13, no. 3 (2023): 388. http://dx.doi.org/10.3390/jpm13030388.
Der volle Inhalt der QuelleAltini, Nicola, Emilia Puro, Maria Giovanna Taccogna, et al. "Tumor Cellularity Assessment of Breast Histopathological Slides via Instance Segmentation and Pathomic Features Explainability." Bioengineering 10, no. 4 (2023): 396. http://dx.doi.org/10.3390/bioengineering10040396.
Der volle Inhalt der QuelleWu, Rujuan, Jiayi Yang, Qi Chen, et al. "Distinguishing of Histopathological Staging Features of H-E Stained Human cSCC by Microscopical Multispectral Imaging." Biosensors 14, no. 10 (2024): 467. http://dx.doi.org/10.3390/bios14100467.
Der volle Inhalt der QuelleRamakrishnan, Vignesh, Annalena Artinger, Laura Alexandra Daza Barragan, et al. "Nuclei Detection and Segmentation of Histopathological Images Using a Feature Pyramidal Network Variant of a Mask R-CNN." Bioengineering 11, no. 10 (2024): 994. http://dx.doi.org/10.3390/bioengineering11100994.
Der volle Inhalt der QuelleMusulin, Jelena, Daniel Štifanić, Ana Zulijani, Tomislav Ćabov, Andrea Dekanić, and Zlatan Car. "An Enhanced Histopathology Analysis: An AI-Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue." Cancers 13, no. 8 (2021): 1784. http://dx.doi.org/10.3390/cancers13081784.
Der volle Inhalt der QuelleNicolás-Sáenz, Laura, Sara Guerrero-Aspizua, Javier Pascau, and Arrate Muñoz-Barrutia. "Nonlinear Image Registration and Pixel Classification Pipeline for the Study of Tumor Heterogeneity Maps." Entropy 22, no. 9 (2020): 946. http://dx.doi.org/10.3390/e22090946.
Der volle Inhalt der QuelleHuang, Zhi, Anil V. Parwani, Kun Huang, and Zaibo Li. "Abstract 5436: Developing artificial intelligence algorithms to predict response to neoadjuvant chemotherapy in HER2-positive breast cancer." Cancer Research 83, no. 7_Supplement (2023): 5436. http://dx.doi.org/10.1158/1538-7445.am2023-5436.
Der volle Inhalt der Quellede Oliveira, Lays Assolini Pinheiro, Diana Lorena Garcia Lopes, João Pedro Perez Gomes, et al. "Enhanced Diagnostic Precision: Assessing Tumor Differentiation in Head and Neck Squamous Cell Carcinoma Using Multi-Slice Spiral CT Texture Analysis." Journal of Clinical Medicine 13, no. 14 (2024): 4038. http://dx.doi.org/10.3390/jcm13144038.
Der volle Inhalt der QuelleFagundes, Theara C., Arnoldo Mafra, Rodrigo G. Silva, et al. "Individualized threshold for tumor segmentation in 18F-FDG PET/CT imaging: The key for response evaluation of neoadjuvant chemoradiation therapy in patients with rectal cancer?" Revista da Associação Médica Brasileira 64, no. 2 (2018): 119–26. http://dx.doi.org/10.1590/1806-9282.64.02.119.
Der volle Inhalt der QuelleAnghel, Cristian, Mugur Cristian Grasu, Denisa Andreea Anghel, Gina-Ionela Rusu-Munteanu, Radu Lucian Dumitru, and Ioana Gabriela Lupescu. "Pancreatic Adenocarcinoma: Imaging Modalities and the Role of Artificial Intelligence in Analyzing CT and MRI Images." Diagnostics 14, no. 4 (2024): 438. http://dx.doi.org/10.3390/diagnostics14040438.
Der volle Inhalt der QuelleCancian, Pierandrea, Nina Cortese, Matteo Donadon, et al. "Development of a Deep-Learning Pipeline to Recognize and Characterize Macrophages in Colo-Rectal Liver Metastasis." Cancers 13, no. 13 (2021): 3313. http://dx.doi.org/10.3390/cancers13133313.
Der volle Inhalt der QuelleBundschuh, Lena, Jens Buermann, Marieta Toma, et al. "A Tumor Volume Segmentation Algorithm Based on Radiomics Features in FDG-PET in Lung Cancer Patients, Validated Using Surgical Specimens." Diagnostics 14, no. 23 (2024): 2654. http://dx.doi.org/10.3390/diagnostics14232654.
Der volle Inhalt der QuelleMahmoudi, Keon, Daniel H. Kim, Elham Tavakkol, et al. "Multiparametric Radiogenomic Model to Predict Survival in Patients with Glioblastoma." Cancers 16, no. 3 (2024): 589. http://dx.doi.org/10.3390/cancers16030589.
Der volle Inhalt der QuelleBroggi, Giuseppe, Antonino Maniaci, Mario Lentini, et al. "Artificial Intelligence in Head and Neck Cancer Diagnosis: A Comprehensive Review with Emphasis on Radiomics, Histopathological, and Molecular Applications." Cancers 16, no. 21 (2024): 3623. http://dx.doi.org/10.3390/cancers16213623.
Der volle Inhalt der QuelleZováthi, Bendegúz H., Réka Mohácsi, Attila Marcell Szász, and György Cserey. "Breast Tumor Tissue Segmentation with Area-Based Annotation Using Convolutional Neural Network." Diagnostics 12, no. 9 (2022): 2161. http://dx.doi.org/10.3390/diagnostics12092161.
Der volle Inhalt der QuelleHosainey, Sayied Abdol Mohieb, David Bouget, Ingerid Reinertsen, et al. "Are there predilection sites for intracranial meningioma? A population-based atlas." Neurosurgical Review 45, no. 2 (2021): 1543–52. http://dx.doi.org/10.1007/s10143-021-01652-9.
Der volle Inhalt der QuelleCapar, Abdulkerim, Dursun Ali Ekinci, Mucahit Ertano, et al. "An interpretable framework for inter-observer agreement measurements in TILs scoring on histopathological breast images: A proof-of-principle study." PLOS ONE 19, no. 12 (2024): e0314450. https://doi.org/10.1371/journal.pone.0314450.
Der volle Inhalt der QuelleZhang, Xiaoxuan, Xiongfeng Zhu, Kai Tang, Yinghua Zhao, Zixiao Lu, and Qianjin Feng. "DDTNet: A dense dual-task network for tumor-infiltrating lymphocyte detection and segmentation in histopathological images of breast cancer." Medical Image Analysis 78 (May 2022): 102415. http://dx.doi.org/10.1016/j.media.2022.102415.
Der volle Inhalt der QuelleBali, Ayman, Saskia Wolter, Daniela Pelzel, et al. "Real-Time Intraoperative Decision-Making in Head and Neck Tumor Surgery: A Histopathologically Grounded Hyperspectral Imaging and Deep Learning Approach." Cancers 17, no. 10 (2025): 1617. https://doi.org/10.3390/cancers17101617.
Der volle Inhalt der QuelleYoubi, Mohammed Ridha, Feroui Amel, Mourad Kholkhal, and Nabil Dib. "A non-invasive approach to prostate cancer diagnosis with MRI-based feature extraction and machine learning." STUDIES IN ENGINEERING AND EXACT SCIENCES 5, no. 2 (2024): e12034. https://doi.org/10.54021/seesv5n2-761.
Der volle Inhalt der QuelleBundschuh, Lena, Vesna Prokic, Matthias Guckenberger, Stephanie Tanadini-Lang, Markus Essler, and Ralph A. Bundschuh. "A Novel Radiomics-Based Tumor Volume Segmentation Algorithm for Lung Tumors in FDG-PET/CT after 3D Motion Correction—A Technical Feasibility and Stability Study." Diagnostics 12, no. 3 (2022): 576. http://dx.doi.org/10.3390/diagnostics12030576.
Der volle Inhalt der QuellePan, Xiaoxi, Maria E. Salvatierra, Caner Ercan, et al. "Abstract 2426: TMEseg: Connecting histopathology with spatial transcriptomics through tumor microenvironment segmentation for lung cancer." Cancer Research 85, no. 8_Supplement_1 (2025): 2426. https://doi.org/10.1158/1538-7445.am2025-2426.
Der volle Inhalt der QuelleDanaher, Patrick, Michael Patrick, Shanshan He, et al. "Abstract 751: High-resolution and AI-enabled single-cell spatial transcriptomics and histopathology integrated to reveal tumor differentiation and immune exclusion in skin squamous cell carcinoma." Cancer Research 85, no. 8_Supplement_1 (2025): 751. https://doi.org/10.1158/1538-7445.am2025-751.
Der volle Inhalt der QuelleZhou, Wentong, Ziheng Deng, Yong Liu, Hui Shen, Hongwen Deng, and Hongmei Xiao. "Global Research Trends of Artificial Intelligence on Histopathological Images: A 20-Year Bibliometric Analysis." International Journal of Environmental Research and Public Health 19, no. 18 (2022): 11597. http://dx.doi.org/10.3390/ijerph191811597.
Der volle Inhalt der QuelleJaber, Mustafa I., Christopher W. Szeto, Bing Song, et al. "Pathology image-based lung cancer subtyping using deeplearning features and cell-density maps." Electronic Imaging 2020, no. 10 (2020): 64–1. http://dx.doi.org/10.2352/issn.2470-1173.2020.10.ipas-064.
Der volle Inhalt der QuelleKurczyk, Agata, Marta Gawin, Piotr Paul, et al. "Prognostic Value of Molecular Intratumor Heterogeneity in Primary Oral Cancer and Its Lymph Node Metastases Assessed by Mass Spectrometry Imaging." Molecules 27, no. 17 (2022): 5458. http://dx.doi.org/10.3390/molecules27175458.
Der volle Inhalt der QuelleEminaga, Okyaz, Mahmoud Abbas, Axel Semjonow, James D. Brooks, and Daniel Rubin. "Determination of biologic and prognostic feature scores from whole slide histology images using deep learning." Journal of Clinical Oncology 38, no. 15_suppl (2020): e17527-e17527. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e17527.
Der volle Inhalt der QuelleMilić, Marko, Šćepan Sinanović, and Tanja Prodović. "Digital pathology and bioinformatics analysis of PIT1 expression in pituitary macroadenomas." Medicinski glasnik Specijalne bolnice za bolesti štitaste žlezde i bolesti metabolizma 30, no. 97 (2025): 7–16. https://doi.org/10.5937/mgiszm2597007m.
Der volle Inhalt der QuelleJung, Jiyoon, Eunsu Kim, Hyeseong Lee, Sung Hak Lee, and Sangjeong Ahn. "Automated Hybrid Model for Detecting Perineural Invasion in the Histology of Colorectal Cancer." Applied Sciences 12, no. 18 (2022): 9159. http://dx.doi.org/10.3390/app12189159.
Der volle Inhalt der QuelleLiu, Yan, Fadila Zerka, Sylvain Bodard, et al. "CT based radiomics signature for phenotyping histopathological subtype in patients with non-small cell lung cancer." Journal of Clinical Oncology 41, no. 16_suppl (2023): e20599-e20599. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e20599.
Der volle Inhalt der QuelleTalwar, Vineet, Kundan Singh Chufal, and Srujana Joga. "Artificial Intelligence: A New Tool in Oncologist's Armamentarium." Indian Journal of Medical and Paediatric Oncology 42, no. 06 (2021): 511–17. http://dx.doi.org/10.1055/s-0041-1735577.
Der volle Inhalt der QuelleKhalil, Muhammad-Adil, Yu-Ching Lee, Huang-Chun Lien, Yung-Ming Jeng, and Ching-Wei Wang. "Fast Segmentation of Metastatic Foci in H&E Whole-Slide Images for Breast Cancer Diagnosis." Diagnostics 12, no. 4 (2022): 990. http://dx.doi.org/10.3390/diagnostics12040990.
Der volle Inhalt der QuelleGrewal, Mahip, Taha Ahmed, and Ammar Asrar Javed. "Current state of radiomics in hepatobiliary and pancreatic malignancies." Artificial Intelligence Surgery 3, no. 4 (2023): 217–32. http://dx.doi.org/10.20517/ais.2023.28.
Der volle Inhalt der QuelleKerkour, Thamila, Loes Hollestein, Alex Nigg, et al. "Abstract 2007: Prognostic value of immune infiltrating lymphocytes in primary cutaneous melanoma: Insights from the D-ESMEL study." Cancer Research 85, no. 8_Supplement_1 (2025): 2007. https://doi.org/10.1158/1538-7445.am2025-2007.
Der volle Inhalt der QuelleTheocharopoulos, Charalampos, Spyridon Davakis, Dimitrios C. Ziogas, et al. "Deep Learning for Image Analysis in the Diagnosis and Management of Esophageal Cancer." Cancers 16, no. 19 (2024): 3285. http://dx.doi.org/10.3390/cancers16193285.
Der volle Inhalt der QuelleLu, Di, Yupeng Cai, Liuyin Chen, et al. "Artificial intelligence-based prediction model of malignant lung nodules for preoperative planning." Journal of Clinical Oncology 42, no. 16_suppl (2024): 8034. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.8034.
Der volle Inhalt der QuellePiñeiro Fiel, Manuel, Carlos Pérez Míguez, Jose Antonio Taibo Salorio, et al. "Automated Image Analysis Pipeline for Standardized Processing, Segmentation, and Feature Extraction in Diffuse Large B-Cell Lymphoma Histological Slides: Towards Enhanced Prediction of Immunotherapy Response and Risk Stratification." Blood 144, Supplement 1 (2024): 3593. https://doi.org/10.1182/blood-2024-199008.
Der volle Inhalt der QuelleRigamonti, Alessandra, Marika Viatore, Rebecca Polidori, et al. "Abstract 5783: Integration of AI-powered digital pathology and imaging mass cytometry to identify relevant features of the tumor microenvironment." Cancer Research 83, no. 7_Supplement (2023): 5783. http://dx.doi.org/10.1158/1538-7445.am2023-5783.
Der volle Inhalt der QuelleKong, Qianqian, Ruilei Li, Jiaran Zhang, et al. "Annotations-free survival prediction with WSIs using graph convolutional neural networks." Journal of Clinical Oncology 42, no. 16_suppl (2024): e16501-e16501. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.e16501.
Der volle Inhalt der QuelleWu, Wei, Lauren Cech, Victor Olivas, Aubhishek Zaman, Daniel Lucas Kerr, and Trever G. Bivona. "Deep learning-based characterization of the drug tolerant persister cell state in lung cancer." JCO Global Oncology 9, Supplement_1 (2023): 141. http://dx.doi.org/10.1200/go.2023.9.supplement_1.141.
Der volle Inhalt der QuelleLiu, Yunhe, Ansam Sinjab, Jimin Min, et al. "Abstract 166: Spatial subtypes and cellular interactions of cancer-associated fibroblasts revealed by single-cell spatial omics." Cancer Research 85, no. 8_Supplement_1 (2025): 166. https://doi.org/10.1158/1538-7445.am2025-166.
Der volle Inhalt der QuelleDi Dio, Michele, Simona Barbuto, Claudio Bisegna, et al. "Artificial Intelligence-Based Hyper Accuracy Three-Dimensional (HA3D®) Models in Surgical Planning of Challenging Robotic Nephron-Sparing Surgery: A Case Report and Snapshot of the State-of-the-Art with Possible Future Implications." Diagnostics 13, no. 14 (2023): 2320. http://dx.doi.org/10.3390/diagnostics13142320.
Der volle Inhalt der QuelleZhu, Zede, Yiran Sun, and Barmak Honarvar Shakibaei Asli. "Early Breast Cancer Detection Using Artificial Intelligence Techniques Based on Advanced Image Processing Tools." Electronics 13, no. 17 (2024): 3575. http://dx.doi.org/10.3390/electronics13173575.
Der volle Inhalt der Quelle