Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „HISTOPATHOLOGY IMAGE“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "HISTOPATHOLOGY IMAGE" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "HISTOPATHOLOGY IMAGE"
Chen, Jia-Mei, Yan Li, Jun Xu, Lei Gong, Lin-Wei Wang, Wen-Lou Liu und Juan Liu. „Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review“. Tumor Biology 39, Nr. 3 (März 2017): 101042831769455. http://dx.doi.org/10.1177/1010428317694550.
Der volle Inhalt der QuelleArevalo, John, Angel Cruz-Roa und Fabio A. González O. „Representación de imágenes de histopatología utilizada en tareas de análisis automático: estado del arte“. Revista Med 22, Nr. 2 (01.12.2014): 79. http://dx.doi.org/10.18359/rmed.1184.
Der volle Inhalt der QuelleWang, Pin, Shanshan Lv, Yongming Li, Qi Song, Linyu Li, Jiaxin Wang und Hehua Zhang. „Hybrid Deep Transfer Network and Rotational Sample Subspace Ensemble Learning for Early Cancer Detection“. Journal of Medical Imaging and Health Informatics 10, Nr. 10 (01.10.2020): 2289–96. http://dx.doi.org/10.1166/jmihi.2020.3172.
Der volle Inhalt der QuelleWang, Pin, Shanshan Lv, Yongming Li, Qi Song, Linyu Li, Jiaxin Wang und Hehua Zhang. „Hybrid Deep Transfer Network and Rotational Sample Subspace Ensemble Learning for Early Cancer Detection“. Journal of Medical Imaging and Health Informatics 10, Nr. 10 (01.10.2020): 2289–96. http://dx.doi.org/10.1166/jmihi.2020.31722289.
Der volle Inhalt der QuelleTawfeeq, Furat Nidhal, Nada A. S. Alwan und Basim M. Khashman. „Optimization of Digital Histopathology Image Quality“. IAES International Journal of Artificial Intelligence (IJ-AI) 7, Nr. 2 (20.04.2018): 71. http://dx.doi.org/10.11591/ijai.v7.i2.pp71-77.
Der volle Inhalt der QuelleGupta, Rachit Kumar, Jatinder Manhas und Mandeep Kour. „Hybrid Feature Extraction Based Ensemble Classification Model to Diagnose Oral Carcinoma Using Histopathological Images“. JOURNAL OF SCIENTIFIC RESEARCH 66, Nr. 03 (2022): 219–26. http://dx.doi.org/10.37398/jsr.2022.660327.
Der volle Inhalt der QuelleRani V, Sudha, und M. Jogendra Kumar. „Histopathological Image Classification Methods and Techniques in Deep Learning Field“. International Journal on Recent and Innovation Trends in Computing and Communication 10, Nr. 2s (31.12.2022): 158–65. http://dx.doi.org/10.17762/ijritcc.v10i2s.5923.
Der volle Inhalt der QuelleTellez, David, Geert Litjens, Jeroen van der Laak und Francesco Ciompi. „Neural Image Compression for Gigapixel Histopathology Image Analysis“. IEEE Transactions on Pattern Analysis and Machine Intelligence 43, Nr. 2 (01.02.2021): 567–78. http://dx.doi.org/10.1109/tpami.2019.2936841.
Der volle Inhalt der QuelleKwak, Deawon, Jiwoo Choi und Sungjin Lee. „Rethinking Breast Cancer Diagnosis through Deep Learning Based Image Recognition“. Sensors 23, Nr. 4 (19.02.2023): 2307. http://dx.doi.org/10.3390/s23042307.
Der volle Inhalt der QuelleKandel, Ibrahem, Mauro Castelli und Aleš Popovič. „Comparative Study of First Order Optimizers for Image Classification Using Convolutional Neural Networks on Histopathology Images“. Journal of Imaging 6, Nr. 9 (08.09.2020): 92. http://dx.doi.org/10.3390/jimaging6090092.
Der volle Inhalt der QuelleDissertationen zum Thema "HISTOPATHOLOGY IMAGE"
Chaganti, Shikha. „Image Analysis of Glioblastoma Histopathology“. University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1406820611.
Der volle Inhalt der QuelleDI, CATALDO SANTA. „Image Processing Techniques for Histopathology“. Doctoral thesis, Politecnico di Torino, 2011. http://hdl.handle.net/11583/2586367.
Der volle Inhalt der QuelleSertel, Olcay. „Image Analysis for Computer-aided Histopathology“. The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1276791696.
Der volle Inhalt der QuelleHaddad, Jane Wurster 1965. „Evaluation of diagnostic clues in histopathology through image processing techniques“. Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/277296.
Der volle Inhalt der QuelleTraore, Lamine. „Semantic modeling of an histopathology image exploration and analysis tool“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066621/document.
Der volle Inhalt der QuelleSemantic modelling of a histopathology image exploration and analysis tool. Recently, anatomic pathology (AP) has seen the introduction of several tools such as high-resolution histopathological slide scanners, efficient software viewers for large-scale histopathological images and virtual slide technologies. These initiatives created the conditions for a broader adoption of computer-aided diagnosis based on whole slide images (WSI) with the hope of a possible contribution to decreasing inter-observer variability. Beside this, automatic image analysis algorithms represent a very promising solution to support pathologist’s laborious tasks during the diagnosis process. Similarly, in order to reduce inter-observer variability between AP reports of malignant tumours, the College of American Pathologists edited 67 organ-specific Cancer Checklists and associated Protocols (CAP-CC&P). Each checklist includes a set of AP observations that are relevant in the context of a given organ-specific cancer and have to be reported by the pathologist. The associated protocol includes interpretation guidelines for most of the required observations. All these changes and initiatives bring up a number of scientific challenges such as the sustainable management of the available semantic resources associated to the diagnostic interpretation of AP images by both humans and computers. In this context, reference vocabularies and formalization of the associated knowledge are especially needed to annotate histopathology images with labels complying with semantic standards. In this research work, we present our contribution in this direction. We propose a sustainable way to bridge the content, features, performance and usability gaps between histopathology and WSI analysis
Hossain, Md Shamim. „An automated deep learning based approach for nuclei segmentation of renal digital histopathology image analysis“. Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2022. https://ro.ecu.edu.au/theses/2611.
Der volle Inhalt der QuelleKårsnäs, Andreas. „Image Analysis Methods and Tools for Digital Histopathology Applications Relevant to Breast Cancer Diagnosis“. Doctoral thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-219306.
Der volle Inhalt der QuelleFanchon, Louise. „Autoradiographie quantitative d'échantillons prélevés par biopsie guidée par TEP/TDM : méthode et applications cliniques“. Thesis, Brest, 2016. http://www.theses.fr/2016BRES0018.
Der volle Inhalt der QuelleDuring the last decade, positron emission tomography (PET) has been finding broader application in oncology. Some tumors that are non-visible in standard anatomic imaging like computerized tomography (CT) or ultrasounds, can be detected by measuring in 3D the metabolic activity of the body, using PET imaging. PET images can also be used to deliver localized therapy like radiation therapy or ablation. In order to deliver localized therapy, the tumor border has to be delineated with very high accuracy. However, the poor spatial resolution of PET images makes the segmentation challenging. Studies have shown that manual segmentation introduces a large inter- and intra- variability, and is very time consuming. For these reasons, many automatic segmentation algorithms have been developed. However, few datasets with histopathological information are available to test and validate these algorithms since it is experimentally difficult to produce them. The aim of the method developed was to evaluate PET segmentation algorithms against the underlying histopathology. This method consists in acquiring quantitative autoradiography of biopsy specimen extracted under PET/CT guidance. The autoradiography allows imaging the radiotracer distribution in the biopsy specimen with a very high spatial accuracy. Histopathological sections of the specimen can then obtained and observed under the microscope. The autoradiography and the micrograph of the histological sections can then be registered with the PET image, by aligning them first with the biopsy needle seen on the CT image and then transferring them onto the PET image. The next step was to use this dataset to test two PET automatic segmentation algorithms: the Fuzzy Locally Adaptive Bayesian (FLAB) developed at the Laboratory of Medical Information Processing (LaTIM) in Brest, France, as well as a fix threshold segmentation method. However, the reliability of the dataset produced depends on the accuracy of the registration of the PET, autoradiography and micrograph images. The main source of uncertainty in the registration of these images comes from the registration between the CT and the PET. In order to evaluate the accuracy of the registration, a method was developed. The results obtained with this method showed that the registration error ranges from 1.1 to 10.9mm. Based on those results, the dataset obtained from 4 patients was judged satisfying to test the segmentation algorithms. The comparison of the contours obtained with FLAB and with the fixed threshold method shows that at the point of biopsy, the FLAB contour is closer than that to the histopathology contour. However, the two segmentation methods give similar contours, because the lesions were homogeneous
Hrabovszki, Dávid. „Classification of brain tumors in weakly annotated histopathology images with deep learning“. Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177271.
Der volle Inhalt der QuelleAzar, Jimmy. „Automated Tissue Image Analysis Using Pattern Recognition“. Doctoral thesis, Uppsala universitet, Bildanalys och människa-datorinteraktion, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-231039.
Der volle Inhalt der QuelleBücher zum Thema "HISTOPATHOLOGY IMAGE"
Y, Mary J., Rigaut J. P, Unité de recherches biomathématiques et biostatistiques., Institut national de la santé et de la recherche médicale., Association pour la recherche sur le cancer. und European Society of Pathology, Hrsg. Quantitative image analysis in cancer cytology and histology. Amsterdam: Elsevier Science, 1986.
Den vollen Inhalt der Quelle findenY, Mary J., Rigaut J. P, Institut national de la santé et de la recherche médicale (France). Unité de recherches biomathématiques et biostatistiques., Association pour le développment de la recherche sur le cancer (France) und European Society of Pathology, Hrsg. Quantitative image analysis in cancer cytology and histology: Based on a symposium. Amsterdam: Elsevier, 1986.
Den vollen Inhalt der Quelle findenChevanne, Marta, und Riccardo Caldini. Immagini di Istopatologia. Florence: Firenze University Press, 2007. http://dx.doi.org/10.36253/978-88-5518-023-8.
Der volle Inhalt der QuelleTibor, Tot, und Dean Peter B, Hrsg. Breast cancer: The art and science of early detection with mammography : perception, interpretation, histopathologic correlation. Stuttgart: Thieme, 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "HISTOPATHOLOGY IMAGE"
Mohanty, Manoranjan, und Wei Tsang Ooi. „Histopathology Image Streaming“. In Advances in Multimedia Information Processing – PCM 2012, 534–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34778-8_50.
Der volle Inhalt der QuelleChhoker, Ayush, Kunlika Saxena, Vipin Rai und Vishwadeepak Singh Baghela. „Histopathology Osteosarcoma Image Classification“. In Proceedings of International Conference on Recent Trends in Computing, 163–74. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8825-7_15.
Der volle Inhalt der QuelleOrtega-Gil, Ana, Arrate Muñoz-Barrutia, Laura Fernandez-Terron und Juan José Vaquero. „Tuberculosis Histopathology on X Ray CT“. In Image Analysis for Moving Organ, Breast, and Thoracic Images, 169–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00946-5_18.
Der volle Inhalt der QuelleBueno, Gloria, Oscar Déniz, Jesús Salido, M. Milagro Fernández, Noelia Vállez und Marcial García-Rojo. „Colour Model Analysis for Histopathology Image Processing“. In Color Medical Image Analysis, 165–80. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5389-1_9.
Der volle Inhalt der QuelleShi, Xiaoshuang, Fuyong Xing, Yuanpu Xie, Hai Su und Lin Yang. „Cell Encoding for Histopathology Image Classification“. In Lecture Notes in Computer Science, 30–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66185-8_4.
Der volle Inhalt der QuelleWei, Jerry, Arief Suriawinata, Bing Ren, Xiaoying Liu, Mikhail Lisovsky, Louis Vaickus, Charles Brown et al. „A Petri Dish for Histopathology Image Analysis“. In Artificial Intelligence in Medicine, 11–24. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77211-6_2.
Der volle Inhalt der QuelleLi, Chen, Dan Xue, Fanjie Kong, Zhijie Hu, Hao Chen, Yudong Yao, Hongzan Sun et al. „Cervical Histopathology Image Classification Using Ensembled Transfer Learning“. In Advances in Intelligent Systems and Computing, 26–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23762-2_3.
Der volle Inhalt der QuelleAhmed, Hamza Kamel, Baraa Tantawi, Malak Magdy und Gehad Ismail Sayed. „Quantum Optimized AlexNet for Histopathology Breast Image Diagnosis“. In Proceedings of the 9th International Conference on Advanced Intelligent Systems and Informatics 2023, 348–57. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43247-7_31.
Der volle Inhalt der QuelleTan, Jing Wei, und Won-Ki Jeong. „Histopathology Image Classification Using Deep Manifold Contrastive Learning“. In Lecture Notes in Computer Science, 683–92. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43987-2_66.
Der volle Inhalt der QuelleRoy, Bijoyeta, und Mousumi Gupta. „Macroscopic Reconstruction for Histopathology Images: A Survey“. In Computer Vision and Machine Intelligence in Medical Image Analysis, 101–12. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8798-2_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "HISTOPATHOLOGY IMAGE"
Mannam, Varun, Yide Zhang, Yinhao Zhu und Scott Howard. „Instant Image Denoising Plugin for ImageJ using Convolutional Neural Networks“. In Microscopy Histopathology and Analytics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/microscopy.2020.mw2a.3.
Der volle Inhalt der QuelleTsai, Sheng-Ting, Chin-Cheng Chan, Homer H. Chen, Jeng-Wei Tjiu und Sheng-Lung Huang. „Segmentation based OCT Image to H&E-like Image Conversion“. In Microscopy Histopathology and Analytics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/microscopy.2020.mm3a.5.
Der volle Inhalt der QuelleSugie, Kenji, Kiyotaka Sasagawa, Mark Christian Guinto, Makito Haruta, Takashi Tokuda und Jun Ohta. „Image refocusing of miniature CMOS image sensor with angle-selective pixels“. In Microscopy Histopathology and Analytics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/microscopy.2020.mth3a.5.
Der volle Inhalt der QuelleRueden, Curtis T., und Kevin Eliceiri. „The ImageJ Ecosystem: An Open and Extensible Platform for Biomedical Image Analysis“. In Microscopy Histopathology and Analytics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/microscopy.2018.mth2a.3.
Der volle Inhalt der QuelleLi, Xinyang, Zhifeng Zhao, Guoxun Zhang, Hui Qiao, Haoqian Wang und Qinghai Dai. „High-fidelity fluorescence image restoration using deep unsupervised learning“. In Microscopy Histopathology and Analytics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/microscopy.2020.mw2a.2.
Der volle Inhalt der QuelleWang, Hongda, Yair Rivenson, Yiyin Jin, Zhensong Wei, Ronald Gao, Harun Günaydın, Laurent A. Bentolila, Comert Kural und Aydogan Ozcan. „Deep learning-based super-resolution and image transformation into structured illumination microscopy“. In Microscopy Histopathology and Analytics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/microscopy.2020.mm3a.4.
Der volle Inhalt der QuelleSikaroudi, Milad, Benyamin Ghojogh, Fakhri Karray, Mark Crowley und H. R. Tizhoosh. „Magnification Generalization For Histopathology Image Embedding“. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021. http://dx.doi.org/10.1109/isbi48211.2021.9433978.
Der volle Inhalt der QuelleHou, Le, Kunal Singh, Dimitris Samaras, Tahsin M. Kurc, Yi Gao, Roberta J. Seidman und Joel H. Saltz. „Automatic histopathology image analysis with CNNs“. In 2016 New York Scientific Data Summit (NYSDS). IEEE, 2016. http://dx.doi.org/10.1109/nysds.2016.7747812.
Der volle Inhalt der Quelle„Customized EfficientNet for Histopathology Image Representation“. In 2022 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2022. http://dx.doi.org/10.1109/ssci51031.2022.10022191.
Der volle Inhalt der QuelleT, Soumya. „Detection and Differentiation of blood cancer cells using Edge Detection method“. In The International Conference on scientific innovations in Science, Technology, and Management. International Journal of Advanced Trends in Engineering and Management, 2023. http://dx.doi.org/10.59544/zbua6077/ngcesi23p138.
Der volle Inhalt der Quelle