Zeitschriftenartikel zum Thema „Hopkinson pressure bars (SHPB)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Hopkinson pressure bars (SHPB)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Harrigan, John J., Bright Ahonsi, Elisavet Palamidi und Steve R. Reid. „Experimental and numerical investigations on the use of polymer Hopkinson pressure bars“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, Nr. 2023 (28.08.2014): 20130201. http://dx.doi.org/10.1098/rsta.2013.0201.
Der volle Inhalt der QuellePham, Thanh Nam, Hyo Seong Choi und Jong Bong Kim. „A Numerical Investigation into the Tensile Split Hopkinson Pressure Bars Test for Sheet Metals“. Applied Mechanics and Materials 421 (September 2013): 464–67. http://dx.doi.org/10.4028/www.scientific.net/amm.421.464.
Der volle Inhalt der QuelleQuinn, R. M., L. H. Zhang, M. J. Cox, D. Townsend, T. Cartwright, G. Aldrich-Smith, P. A. Hooper und J. P. Dear. „Development and Validation of a Hopkinson Bar for Hazardous Materials“. Experimental Mechanics 60, Nr. 9 (18.08.2020): 1275–88. http://dx.doi.org/10.1007/s11340-020-00638-w.
Der volle Inhalt der QuelleKariem, Muhammad Agus, John H. Beynon und Dong Ruan. „Numerical Simulation of Double Specimens in Split Hopkinson Pressure Bar Testing“. Materials Science Forum 654-656 (Juni 2010): 2483–86. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.2483.
Der volle Inhalt der QuelleBaranowski, Pawel, Roman Gieleta, Jerzy Malachowski, Krzysztof Damaziak und Lukasz Mazurkiewicz. „SPLIT HOPKINSON PRESSURE BAR IMPULSE EXPERIMENTAL MEASUREMENT WITH NUMERICAL VALIDATION“. Metrology and Measurement Systems 21, Nr. 1 (01.03.2014): 47–58. http://dx.doi.org/10.2478/mms-2014-0005.
Der volle Inhalt der QuelleNie, Hailiang, Weifeng Ma, Junjie Ren, Ke Wang, Jun Cao, Wei Dang, Tian Yao und Kang Wang. „Size Effect in the Split Hopkinson Pressure Bar Experiment“. Journal of Physics: Conference Series 2160, Nr. 1 (01.01.2022): 012065. http://dx.doi.org/10.1088/1742-6596/2160/1/012065.
Der volle Inhalt der QuelleAdorna, Marcel, Jan Falta, Tomáš Fíla und Petr Zlámal. „PREPROCESSING OF HOPKINSON BAR EXPERIMENT DATA: FILTER ANALYSIS“. Acta Polytechnica CTU Proceedings 18 (23.10.2018): 77. http://dx.doi.org/10.14311/app.2018.18.0077.
Der volle Inhalt der QuelleZhang, Xing, Bao Cheng Li, Zhi Min Zhang und Zhi Wen Wang. „Investigation on Deformation in ZK60 at High Strain Rate“. Materials Science Forum 488-489 (Juli 2005): 527–30. http://dx.doi.org/10.4028/www.scientific.net/msf.488-489.527.
Der volle Inhalt der QuelleZhao, Peng Duo, Yu Wang, Jian Ye Du, Lei Zhang, Zhi Peng Du und Fang Yun Lu. „Using Split Hopkinson Pressure Bars to Perform Large Strain Compression Tests on Neoprene at Intermediate and High Strain Rates“. Advanced Materials Research 631-632 (Januar 2013): 458–62. http://dx.doi.org/10.4028/www.scientific.net/amr.631-632.458.
Der volle Inhalt der QuelleLee, Sang Hyun, Brian Tuazon und Hyung Seop Shin. „Construction of Data Acquisition/Processing System for Precise Measurement in Split Hopkinson Pressure Bar Test“. Applied Mechanics and Materials 566 (Juni 2014): 554–59. http://dx.doi.org/10.4028/www.scientific.net/amm.566.554.
Der volle Inhalt der QuelleSHU, DONG WEI, CHUN QI LUO und GUO XING LU. „NUMERICAL SIMULATIONS OF THE INFLUENCE OF STRIKER BAR LENGTH ON SHPB MEASUREMENTS“. International Journal of Modern Physics B 22, Nr. 31n32 (30.12.2008): 5813–18. http://dx.doi.org/10.1142/s0217979208051212.
Der volle Inhalt der QuellePeng, Kang, Ke Gao, Jian Liu, Yujiao Liu, Zhenyu Zhang, Xiang Fan, Xuyan Yin, Yongliang Zhang und Gun Huang. „Experimental and Numerical Evaluation of Rock Dynamic Test with Split-Hopkinson Pressure Bar“. Advances in Materials Science and Engineering 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/2048591.
Der volle Inhalt der QuelleButt, Hafiz Sana Ullah, und Pu Xue. „Wave Dispersion and Attenuation in Viscoelastic Split Hopkinson Pressure Bar“. Key Engineering Materials 535-536 (Januar 2013): 547–50. http://dx.doi.org/10.4028/www.scientific.net/kem.535-536.547.
Der volle Inhalt der QuelleLee, Ouk Sub, Yong Hwan Han und Dong Hyeok Kim. „Influence of Temperature and Heat-Aged Condition on the Deformation Behavior of Rubber Material Using SHPB Technique with a Pulse Shaper“. Key Engineering Materials 353-358 (September 2007): 619–26. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.619.
Der volle Inhalt der QuelleZuanetti, Bryan, Kyle J. Ramos, Carl M. Cady, Chris S. Meredith, Daniel T. Casem, Adam Golder und Cynthia A. Bolme. „Miniature Beryllium Split-Hopkinson Pressure Bars for Extending the Range of Achievable Strain-Rates“. Metals 12, Nr. 11 (28.10.2022): 1834. http://dx.doi.org/10.3390/met12111834.
Der volle Inhalt der QuelleChurch, Philip, Rory Cornish, Ian Cullis, Peter Gould und Ian Lewtas. „Using the split Hopkinson pressure bar to validate material models“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, Nr. 2023 (28.08.2014): 20130294. http://dx.doi.org/10.1098/rsta.2013.0294.
Der volle Inhalt der QuelleZhang, Dan, Zhiwu Zhu und Zhijie Liu. „Dynamic Mechanical Behavior and Numerical Simulation of Frozen Soil under Impact Loading“. Shock and Vibration 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/3049097.
Der volle Inhalt der QuelleLu, Fang Yun, Xiao Feng Wang, Rong Chen, Xiang Yu Li, Duo Zhang, Yu Liang Lin, Chao Yang Zhou und Shi Yong Wu. „Comparison Investigation of Tensile Fracture Properties of Al Alloy at Different Dynamic Loadings“. Key Engineering Materials 535-536 (Januar 2013): 156–59. http://dx.doi.org/10.4028/www.scientific.net/kem.535-536.156.
Der volle Inhalt der QuelleCorallo, Luca, und Patricia Verleysen. „The split Hopkinson bar bulge setup: a novel dynamic biaxial test method“. EPJ Web of Conferences 250 (2021): 01019. http://dx.doi.org/10.1051/epjconf/202125001019.
Der volle Inhalt der QuelleTarfaoui, Mostapha. „Dynamic Composite Materials Characterisation with Hopkinson Bars: Design and Development of New Dynamic Compression Systems“. Journal of Composites Science 7, Nr. 1 (11.01.2023): 33. http://dx.doi.org/10.3390/jcs7010033.
Der volle Inhalt der QuelleMcArthur, Jennifer, Christopher Salisbury, Duane Cronin, Michael Worswick und Kevin Williams. „High Strain Rate Characterization of Shock Absorbing Materials for Landmine Protection Concepts“. Shock and Vibration 10, Nr. 3 (2003): 179–86. http://dx.doi.org/10.1155/2003/961910.
Der volle Inhalt der QuelleBendarma, Amine, Tomasz Jankowiak, Alexis Rusinek, Tomasz Lodygowski, Bin Jia, María Henar Miguélez und Maciej Klosak. „Dynamic Behavior of Aluminum Alloy Aw 5005 Undergoing Interfacial Friction and Specimen Configuration in Split Hopkinson Pressure Bar System at High Strain Rates and Temperatures“. Materials 13, Nr. 20 (16.10.2020): 4614. http://dx.doi.org/10.3390/ma13204614.
Der volle Inhalt der QuelleDemiral, Murat, Anish Roy und Vadim V. Silberschmidt. „Dynamic Behavior of Advanced Ti Alloy under Impact Loading: Experimental and Numerical Analysis“. Applied Mechanics and Materials 70 (August 2011): 207–12. http://dx.doi.org/10.4028/www.scientific.net/amm.70.207.
Der volle Inhalt der QuelleZhao, Zhangyong, Yanyu Qiu und Mingyang Wang. „Effects of Strain Rate and Initial Density on the Dynamic Mechanical Behaviour of Dry Calcareous Sand“. Shock and Vibration 2019 (22.07.2019): 1–10. http://dx.doi.org/10.1155/2019/3526727.
Der volle Inhalt der QuelleHou, B., S. B. Tan, R. Xiao und Han Zhao. „Impact Combined Shear-Compression Testing of Honeycombs Using a Rotatable Hopkinson Bar“. Key Engineering Materials 725 (Dezember 2016): 168–73. http://dx.doi.org/10.4028/www.scientific.net/kem.725.168.
Der volle Inhalt der QuelleFíla, Tomáš, Petr Zlámal, Jan Falta, Tomáš Doktor, Petr Koudelka, Daniel Kytýř, Marcel Adorna et al. „Testing of Auxetic Materials Using Hopkinson Bar and Digital Image Correlation“. EPJ Web of Conferences 183 (2018): 02045. http://dx.doi.org/10.1051/epjconf/201818302045.
Der volle Inhalt der QuelleHou, Bing, Meng Zhao, Pei Yang und Yu Long Li. „Capture of Shear Crack Propagation in Metallic Glass by High-Speed Camera and In Situ SEM“. Key Engineering Materials 626 (August 2014): 162–70. http://dx.doi.org/10.4028/www.scientific.net/kem.626.162.
Der volle Inhalt der QuelleKii, Nobuhiko, Takeshi Iwamoto, Alexis Rusinek und Tomasz Jankowiak. „A Study on Reduction of Friction in Impact Compressive Test Based on the Split Hopkinson Pressure Bar Method by Using a Hollow Specimen“. Applied Mechanics and Materials 566 (Juni 2014): 548–53. http://dx.doi.org/10.4028/www.scientific.net/amm.566.548.
Der volle Inhalt der QuelleAdorna, Marcel, Petr Zlámal, Tomáš Fíla, Jan Falta, Markus Felten, Michael Fries und Anne Jung. „TESTING OF HYBRID NICKEL-POLYURETHANE FOAMS AT HIGH STRAIN-RATES USING HOPKINSON BAR AND DIGITAL IMAGE CORRELATION“. Acta Polytechnica CTU Proceedings 18 (23.10.2018): 72. http://dx.doi.org/10.14311/app.2018.18.0072.
Der volle Inhalt der QuelleChen, Lu, Lan Qiao, Jianming Yang und Qingwen Li. „Laboratory Investigation of Energy Propagation and Scattering Characteristics in Cylindrical Rock Specimens“. Advances in Civil Engineering 2018 (24.09.2018): 1–7. http://dx.doi.org/10.1155/2018/2052781.
Der volle Inhalt der QuelleXie, Beixin, Peidong Xu, Liqun Tang, Yongrou Zhang, Kejia Xu, Hong Zhang, Zejia Liu, Licheng Zhou, Yiping Liu und Zhenyu Jiang. „Dynamic Mechanical Properties of Polyvinyl Alcohol Hydrogels Measured by Double-Striker Electromagnetic Driving SHPB System“. International Journal of Applied Mechanics 11, Nr. 02 (März 2019): 1950018. http://dx.doi.org/10.1142/s1758825119500182.
Der volle Inhalt der QuelleDoktor, Tomáš, Tomáš Fíla, Petr Zlámal, Daniel Kytýř und Ondřej Jiroušek. „HIGH STRAIN-RATE COMPRESSIVE TESTING OF FILLING MATERIALS FOR INTER-PENETRATING PHASE COMPOSITES“. Acta Polytechnica CTU Proceedings 25 (06.12.2019): 21–24. http://dx.doi.org/10.14311/app.2019.25.0021.
Der volle Inhalt der QuellePei, Pei, Zhongcai Pei und Zhiyong Tang. „Numerical and Theoretical Analysis of the Inertia Effects and Interfacial Friction in SHPB Test Systems“. Materials 13, Nr. 21 (28.10.2020): 4809. http://dx.doi.org/10.3390/ma13214809.
Der volle Inhalt der QuelleGavrus, Adinel, Florina Bucur, Adrian Rotariu und Sorin Cănănău. „Analysis of Metallic Materials Behavior during Severe Loadings Using a FE Modeling of the SHPB Test Based on a Numerical Calibration of Elastic Strains with Respect to the Raw Measurements and on the Inverse Analysis Principle“. Key Engineering Materials 554-557 (Juni 2013): 1133–46. http://dx.doi.org/10.4028/www.scientific.net/kem.554-557.1133.
Der volle Inhalt der QuelleHong, S. N., H. B. Li und L. F. Rong. „Experimental Study on Stress Wave Propagation Crossing the Jointed Specimen with Different JRCs“. Shock and Vibration 2021 (03.11.2021): 1–12. http://dx.doi.org/10.1155/2021/3096253.
Der volle Inhalt der QuelleMiao, Chun-He, Liang-Zhu Yuan, Jian-Hua Lu, Peng-Fei Wang und Song-Lin Xu. „Deformation evolution and diffusion characteristics of PMMA under impact loading“. Acta Physica Sinica 71, Nr. 21 (2022): 216201. http://dx.doi.org/10.7498/aps.71.20220740.
Der volle Inhalt der QuelleRen, Kerong, Rong Chen, Yuliang Lin, Shun Li, Xianfeng Zhang und Jun Dong. „Probing the Impact Energy Release Behavior of Al/Ni-Based Reactive Metals with Experimental and Numerical Methods“. Metals 9, Nr. 5 (28.04.2019): 499. http://dx.doi.org/10.3390/met9050499.
Der volle Inhalt der QuelleZhang, Zhi Gang, Meng Shen Li, Xiao Long Wang, Xiao Lei Zhong und Qing Li. „Ø100mm SHPB Equipment and its Application“. Applied Mechanics and Materials 99-100 (September 2011): 891–95. http://dx.doi.org/10.4028/www.scientific.net/amm.99-100.891.
Der volle Inhalt der QuelleGanorkar, Kavita, Ketan Arora, Lekhani Gaur, M. D. Goel und Tanusree Chakraborty. „Dynamic Characterization of Concrete using Split Hopkinson Pressure Bar“. Proceedings of the 12th Structural Engineering Convention, SEC 2022: Themes 1-2 1, Nr. 1 (19.12.2022): 1217–21. http://dx.doi.org/10.38208/acp.v1.643.
Der volle Inhalt der QuelleKariem, Muhammad A., Dong Ruan und John H. Beynon. „Numerical Study of Round-Robin Tests on the Split Hopkinson Pressure Bar Technique“. Key Engineering Materials 535-536 (Januar 2013): 518–21. http://dx.doi.org/10.4028/www.scientific.net/kem.535-536.518.
Der volle Inhalt der QuelleJin, Hong Bin. „Numerical Simulation the Stress Uniformity in Split Hopkinson Pressure Bar Testing“. Advanced Materials Research 634-638 (Januar 2013): 2861–64. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.2861.
Der volle Inhalt der QuelleAfdhal, Afdhal, Leonardo Gunawan und Tatacipta Dirgantara. „Experimental Work for Bar Straightness Effect Evaluation of Split Hopkinson Pressure Bar“. Journal of Engineering and Technological Sciences 53, Nr. 6 (31.12.2021): 210613. http://dx.doi.org/10.5614/j.eng.technol.sci.2021.53.6.13.
Der volle Inhalt der QuelleLei, Jin Tao, Ming Hua Zhang und Jian Kang Chen. „Electro-Conductive Property of Polymeric Composite under Impact Loading Using a Modified SHPB“. Advanced Materials Research 291-294 (Juli 2011): 1243–46. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.1243.
Der volle Inhalt der QuelleChen, Jiangping, Weijun Tao, Shi Huan und Chong Xu. „Data processing of wave propagation in viscoelastic split Hopkinson pressure bar“. AIP Advances 12, Nr. 4 (01.04.2022): 045210. http://dx.doi.org/10.1063/5.0083888.
Der volle Inhalt der QuelleMauko, Anja, Branko Nečemer und Zoran Ren. „INVERSE COMPUTATIONAL DETERMINATION OF JOHNSON-COOK PARAMETERS USING THE SHPB TEST APPARATUS“. Acta Polytechnica CTU Proceedings 25 (06.12.2019): 64–67. http://dx.doi.org/10.14311/app.2019.25.0064.
Der volle Inhalt der QuelleFadillah, Hafiz, Sigit Puji Santosa, Leonardo Gunawan, Akbar Afdhal und Agus Purwanto. „Dynamic High Strain Rate Characterization of Lithium-Ion Nickel–Cobalt–Aluminum (NCA) Battery Using Split Hopkinson Tensile/Pressure Bar Methodology“. Energies 13, Nr. 19 (26.09.2020): 5061. http://dx.doi.org/10.3390/en13195061.
Der volle Inhalt der QuelleJia, Bin, Zheng Liang Li, Lu Cheng und Hua Chuan Yao. „Experimental Study on Dynamic Mechanical Behaviour of Concrete with High Temperature“. Advanced Materials Research 194-196 (Februar 2011): 1109–13. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.1109.
Der volle Inhalt der QuelleLee, Ouk Sub, Jong Won Lee und Sung Hyun Kim. „Dynamic Deformation Behavior of Rubber (NR/NBR) under High Strain Rate Compressive Loading“. Key Engineering Materials 297-300 (November 2005): 172–77. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.172.
Der volle Inhalt der QuelleZuo, Li Sheng, Xing Quan Zhang, Liu San Chen, Jian Ping She, Huan Li und Wei Chen. „Simulation of Laser Shock Wave Propagation and Dispersion in SHPB“. Advanced Materials Research 681 (April 2013): 105–9. http://dx.doi.org/10.4028/www.scientific.net/amr.681.105.
Der volle Inhalt der QuelleGong, J. C., L. E. Malvern und D. A. Jenkins. „Dispersion Investigation in the Split Hopkinson Pressure Bar“. Journal of Engineering Materials and Technology 112, Nr. 3 (01.07.1990): 309–14. http://dx.doi.org/10.1115/1.2903329.
Der volle Inhalt der Quelle