Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Host-parasite relationships.

Zeitschriftenartikel zum Thema „Host-parasite relationships“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Host-parasite relationships" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

McPartland, John M., and Karl W. Hillig. "Host-Parasite Relationships inCannabis." Journal of Industrial Hemp 10, no. 2 (2006): 85–104. http://dx.doi.org/10.1300/j237v10n02_08.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Beaman, B. L., and L. Beaman. "Nocardia species: host-parasite relationships." Clinical Microbiology Reviews 7, no. 2 (1994): 213–64. http://dx.doi.org/10.1128/cmr.7.2.213.

Der volle Inhalt der Quelle
Annotation:
The nocardiae are bacteria belonging to the aerobic actinomycetes. They are an important part of the normal soil microflora worldwide. The type species, Nocardia asteroides, and N. brasiliensis, N. farcinica, N. otitidiscaviarum, N. nova, and N. transvalensis cause a variety of diseases in both normal and immunocompromised humans and animals. The mechanisms of pathogenesis are complex, not fully understood, and include the capacity to evade or neutralize the myriad microbicidal activities of the host. The relative virulence of N. asteroides correlates with the ability to inhibit phagosome-lyso
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Beaman, B. L., and L. Beaman. "Nocardia species: host-parasite relationships." Clinical Microbiology Reviews 7, no. 2 (1994): 213–64. http://dx.doi.org/10.1128/cmr.7.2.213-264.1994.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Calderone, R. A. "Host-Parasite Relationships in Candidosis." Mycoses 32 (April 24, 2009): 12–17. http://dx.doi.org/10.1111/j.1439-0507.1989.tb02303.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Franco, M. "Host-parasite relationships in paracoccidioidomycosis." Medical Mycology 25, no. 1 (1987): 5–18. http://dx.doi.org/10.1080/02681218780000021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Blair, John E. "HOST-PARASITE RELATIONSHIPS: A SUMMATION." Annals of the New York Academy of Sciences 128, no. 1 (2006): 451–56. http://dx.doi.org/10.1111/j.1749-6632.1965.tb11654.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Solomon, N., I. James, N. Alphonsus, and R. Nkiruka. "A Review of Host-Parasite Relationships." Annual Research & Review in Biology 5, no. 5 (2015): 372–84. http://dx.doi.org/10.9734/arrb/2015/10263.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Roberts, James A., George M. Suarez, Bernice Kaack, Gerald J. Domingue, and Stefan B. Svenson. "Host-Parasite Relationships in Acute Pyelonephritis." American Journal of Kidney Diseases 8, no. 3 (1986): 139–45. http://dx.doi.org/10.1016/s0272-6386(86)80016-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Salzet, M., A. Capron, and G. B. Stefano. "Molecular Crosstalk in Host–Parasite Relationships:." Parasitology Today 16, no. 12 (2000): 536–40. http://dx.doi.org/10.1016/s0169-4758(00)01787-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Duff, Gordon W., and Joost J. Oppenheim. "Comparative aspects of host-parasite and host-tumor relationships." Cytokine 4, no. 5 (1992): 331–39. http://dx.doi.org/10.1016/1043-4666(92)90075-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Tellier, Aurélien, and James K. M. Brown. "The Relationship of Host-Mediated Induced Resistance to Polymorphism in Gene-for-Gene Relationships." Phytopathology® 98, no. 1 (2008): 128–36. http://dx.doi.org/10.1094/phyto-98-1-0128.

Der volle Inhalt der Quelle
Annotation:
Gene-for-gene relationships are a common feature of plant-parasite interactions. Polymorphism at host resistance and parasite avirulence loci is maintained if there is negative, direct frequency-dependent selection on alleles of either gene. More specifically, selection of this kind is generated when the disease is polycyclic with frequent auto-infection. When an incompatible interaction occurs between a resistant host and an avirulent parasite, systemic defenses are triggered, rendering the plant more resistant to a later attack by another parasite. However, induced resistance (IR) incurs a f
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Strona, Giovanni, and Simone Fattorini. "A Few Good Reasons Why Species-Area Relationships Do Not Work for Parasites." BioMed Research International 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/271680.

Der volle Inhalt der Quelle
Annotation:
Several studies failed to find strong relationships between the biological and ecological features of a host and the number of parasite species it harbours. In particular, host body size and geographical range are generally only weak predictors of parasite species richness, especially when host phylogeny and sampling effort are taken into account. These results, however, have been recently challenged by a meta-analytic study that suggested a prominent role of host body size and range extent in determining parasite species richness (species-area relationships). Here we argue that, in general, r
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Petri, W. A., C. G. Clark, and L. S. Diamond. "Host-Parasite Relationships in Amebiasis: Conference Report." Journal of Infectious Diseases 169, no. 3 (1994): 483–84. http://dx.doi.org/10.1093/infdis/169.3.483.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Justine, J. L., and M. C. Durette-Desset. "Evolution of Parasites and Host–Parasite Relationships." Parasitology Today 16, no. 8 (2000): 315. http://dx.doi.org/10.1016/s0169-4758(00)01725-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Beckage, Nancy E. "Host-parasite hormonal relationships: A common theme?" Experimental Parasitology 72, no. 3 (1991): 332–38. http://dx.doi.org/10.1016/0014-4894(91)90153-n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Turner, Wendy C., Pauline L. Kamath, Henriette van Heerden, et al. "The roles of environmental variation and parasite survival in virulence–transmission relationships." Royal Society Open Science 8, no. 6 (2021): 210088. http://dx.doi.org/10.1098/rsos.210088.

Der volle Inhalt der Quelle
Annotation:
Disease outbreaks are a consequence of interactions among the three components of a host–parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host–parasite coevolution. Here, we review research on how environmental context alters virulenc
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Courtney, Cheryl C., and Bruce M. Christensen. "Host-Parasite Relationships of Caryophyllaeid Cestodes and Aquatic Oligochaetes: I. Host Longevity and Parasite Intensity." Journal of Parasitology 73, no. 6 (1987): 1124. http://dx.doi.org/10.2307/3282292.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Bibik, Nacheva, and Arkhipov. "MICROMORPHOLOGICAL PECULIARITIES OF RELATIONSHIPS IN THE “PARASIT-HOST” SYSTEM." THEORY AND PRACTICE OF PARASITIC DISEASE CONTROL, no. 20 (May 14, 2019): 108–14. http://dx.doi.org/10.31016/978-5-9902340-8-6.2019.20.108-114.

Der volle Inhalt der Quelle
Annotation:
Micromorphological, histochemical and pathomorphological features of relationships in the “parasite-host” system before and after exposure to the antitremum (at a dose of 200 mg / kg of LW) and tegalide (at a dose of 30 mg / kg of LW) were studied in a comparative aspect using the example of parasitizing by a Paramphistomum cervi in sheep intestines. The effect of anthelmintics on trematodes is associated with endostation of the parasite, in which certain trophic links are formed between the host and the helminth. The adhesion in the morphofunctional complex “tegument-epithelial tissue of the
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Kuchboev, A., N. E. Tarasovskaya, B. K. Zhumabekova, and M. Yu Klimenko. "INTERSPECIFIC AND INTRASPECIFIC RELATIONSHIPS OF GREAT CORMORANT’S NEMATODE CONTRACAECUM RUDOLPHII IN PAVLODAR REGION." BIOLOGICAL SCIENCES OF KAZAKHSTAN 1 (March 15, 2024): 15–26. http://dx.doi.org/10.52301/1684-940x-2024-1-15-26.

Der volle Inhalt der Quelle
Annotation:
The size of helminths is substantially influenced by interspecific interactions. There are around 90 copies present. The presence of Contracecums in the intestine of a single cormorant individual resulted in a significant reduction in the overall size of the nematodes. When cestodes are present, Contracecums undergo brachymorphic changes, which can be seen as an adaptation to maintain fertility while minimising energy expenditure. The ratio of parasite abundance in the host to parasite size might vary based on the specific parameters of the host-parasite interaction. The size of the parasite c
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

F. Meyer, S. L. "Host-Parasite Relationships BetweenPseudopeziza trifoliif. sp.medicaginis-sativaeand Alfalfa." Phytopathology 77, no. 2 (1987): 309. http://dx.doi.org/10.1094/phyto-77-309.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Cashion, Norma L. "Host-Parasite Relationships in Karnal Bunt of Wheat." Phytopathology 78, no. 1 (1988): 75. http://dx.doi.org/10.1094/phyto-78-75.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Mejia, J. Santiago, Fernando Moreno, Carlos Muskus, Iván D. Vélez, and Richard G. Titus. "The surface–mosaic model in host–parasite relationships." Trends in Parasitology 20, no. 11 (2004): 508–11. http://dx.doi.org/10.1016/j.pt.2004.08.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Douhan, Greg W., and David M. Rizzo. "Host-parasite relationships among bolete infecting Hypomyces species." Mycological Research 107, no. 11 (2003): 1342–49. http://dx.doi.org/10.1017/s0953756203008542.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Di Vito, M., N. Vovlas, and P. Castillo. "Host-parasite relationships of Meloidogyne incognita on spinach." Plant Pathology 53, no. 4 (2004): 508–14. http://dx.doi.org/10.1111/j.1365-3059.2004.01053.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Eleftheriou, Andreas. "Relationships among host microbiota, parasite resistance or tolerance, and host fitness." Conservation Biology 34, no. 6 (2020): 1327–28. http://dx.doi.org/10.1111/cobi.13582.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Rodríguez, Sara M., and Nelson Valdivia. "Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size." PeerJ 5 (August 17, 2017): e3675. http://dx.doi.org/10.7717/peerj.3675.

Der volle Inhalt der Quelle
Annotation:
Background Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Methods Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indi
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Vinson, John E., and Andrew W. Park. "Vector-borne parasite invasion in communities across space and time." Proceedings of the Royal Society B: Biological Sciences 286, no. 1917 (2019): 20192614. http://dx.doi.org/10.1098/rspb.2019.2614.

Der volle Inhalt der Quelle
Annotation:
While vector-borne parasite transmission often operates via generalist-feeding vectors facilitating cross-species transmission in host communities, theory describing the relationship between host species diversity and parasite invasion in these systems is underdeveloped. Host community composition and abundance vary across space and time, generating opportunities for parasite invasion. To explore how host community variation can modify parasite invasion potential, we develop a model for vector-borne parasite transmission dynamics that includes a host community of arbitrary richness and species
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

PATTERSON, JESSE E. H., and KATHREEN E. RUCKSTUHL. "Parasite infection and host group size: a meta-analytical review." Parasitology 140, no. 7 (2013): 803–13. http://dx.doi.org/10.1017/s0031182012002259.

Der volle Inhalt der Quelle
Annotation:
SUMMARYMany studies have identified various host behavioural and ecological traits that are associated with parasite infection, including host gregariousness. By use of meta-analyses, we investigated to what degree parasite prevalence, intensity and species richness are correlated with group size in gregarious species. We predicted that larger groups would have more parasites and higher parasite species richness. We analysed a total of 70 correlations on parasite prevalence, intensity and species richness across different host group sizes. Parasite intensity and prevalence both increased posit
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Hanke, Marc H., Martin H. Posey, and Troy D. Alphin. "Spatial Dynamics of Two Host-Parasite Relationships on Intertidal Oyster Reefs." Diversity 13, no. 6 (2021): 260. http://dx.doi.org/10.3390/d13060260.

Der volle Inhalt der Quelle
Annotation:
Intertidal reefs comprised of the eastern oyster (Crassostrea virginica) have long experienced habitat loss, altering habitat patch characteristics of size and distance from edge to interior, potentially influencing spatial dynamics of host-parasite relationships. Using two parasitic relationships, one between eastern oyster host and parasitic oyster pea crab (Zaops ostreum) and the other between a xanthid crab (Eurypanopeus depressus) and a parasitic rhizocephalan barnacle (Loxothylacus panopaei), we examined how host-parasite population characteristics varied on intertidal reefs by season, r
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Bruyndonckx, Nadia, Sylvain Dubey, Manuel Ruedi, and Philippe Christe. "Molecular cophylogenetic relationships between European bats and their ectoparasitic mites (Acari, Spinturnicidae)." Molecular Phylogenetics and Evolution 51, no. 2 (2009): 227–37. https://doi.org/10.5281/zenodo.13441188.

Der volle Inhalt der Quelle
Annotation:
(Uploaded by Plazi for the Bat Literature Project) Cospeciation between host-parasite species is generally thought to result in mirror-image congruent phylogenies. Incongruence can be explained by mechanisms such as host switching, duplication, failure to speciate and sorting events. To investigate the level of association in the host-parasite relationship between Spinturnicid mites and their bat hosts, we constructed the phylogenetic tree of the genus Spinturnix (Acari, Mesostigmata) and compared it to the host phylogeny. We sequenced 938 bp of the mitochondrial 16S rDNA and Cytochrome Oxydas
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Bruyndonckx, Nadia, Sylvain Dubey, Manuel Ruedi, and Philippe Christe. "Molecular cophylogenetic relationships between European bats and their ectoparasitic mites (Acari, Spinturnicidae)." Molecular Phylogenetics and Evolution 51, no. 2 (2009): 227–37. https://doi.org/10.5281/zenodo.13441188.

Der volle Inhalt der Quelle
Annotation:
(Uploaded by Plazi for the Bat Literature Project) Cospeciation between host-parasite species is generally thought to result in mirror-image congruent phylogenies. Incongruence can be explained by mechanisms such as host switching, duplication, failure to speciate and sorting events. To investigate the level of association in the host-parasite relationship between Spinturnicid mites and their bat hosts, we constructed the phylogenetic tree of the genus Spinturnix (Acari, Mesostigmata) and compared it to the host phylogeny. We sequenced 938 bp of the mitochondrial 16S rDNA and Cytochrome Oxydas
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Bruyndonckx, Nadia, Sylvain Dubey, Manuel Ruedi, and Philippe Christe. "Molecular cophylogenetic relationships between European bats and their ectoparasitic mites (Acari, Spinturnicidae)." Molecular Phylogenetics and Evolution 51, no. 2 (2009): 227–37. https://doi.org/10.5281/zenodo.13441188.

Der volle Inhalt der Quelle
Annotation:
(Uploaded by Plazi for the Bat Literature Project) Cospeciation between host-parasite species is generally thought to result in mirror-image congruent phylogenies. Incongruence can be explained by mechanisms such as host switching, duplication, failure to speciate and sorting events. To investigate the level of association in the host-parasite relationship between Spinturnicid mites and their bat hosts, we constructed the phylogenetic tree of the genus Spinturnix (Acari, Mesostigmata) and compared it to the host phylogeny. We sequenced 938 bp of the mitochondrial 16S rDNA and Cytochrome Oxydas
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Bruyndonckx, Nadia, Sylvain Dubey, Manuel Ruedi, and Philippe Christe. "Molecular cophylogenetic relationships between European bats and their ectoparasitic mites (Acari, Spinturnicidae)." Molecular Phylogenetics and Evolution 51, no. 2 (2009): 227–37. https://doi.org/10.5281/zenodo.13441188.

Der volle Inhalt der Quelle
Annotation:
(Uploaded by Plazi for the Bat Literature Project) Cospeciation between host-parasite species is generally thought to result in mirror-image congruent phylogenies. Incongruence can be explained by mechanisms such as host switching, duplication, failure to speciate and sorting events. To investigate the level of association in the host-parasite relationship between Spinturnicid mites and their bat hosts, we constructed the phylogenetic tree of the genus Spinturnix (Acari, Mesostigmata) and compared it to the host phylogeny. We sequenced 938 bp of the mitochondrial 16S rDNA and Cytochrome Oxydas
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Bruyndonckx, Nadia, Sylvain Dubey, Manuel Ruedi, and Philippe Christe. "Molecular cophylogenetic relationships between European bats and their ectoparasitic mites (Acari, Spinturnicidae)." Molecular Phylogenetics and Evolution 51, no. 2 (2009): 227–37. https://doi.org/10.5281/zenodo.13441188.

Der volle Inhalt der Quelle
Annotation:
(Uploaded by Plazi for the Bat Literature Project) Cospeciation between host-parasite species is generally thought to result in mirror-image congruent phylogenies. Incongruence can be explained by mechanisms such as host switching, duplication, failure to speciate and sorting events. To investigate the level of association in the host-parasite relationship between Spinturnicid mites and their bat hosts, we constructed the phylogenetic tree of the genus Spinturnix (Acari, Mesostigmata) and compared it to the host phylogeny. We sequenced 938 bp of the mitochondrial 16S rDNA and Cytochrome Oxydas
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

CAMPBELL, JENNIFER, BETH KESSLER, CHRISTOPHER MAYACK, and DHRUBA NAUG. "Behavioural fever in infected honeybees: parasitic manipulation or coincidental benefit?" Parasitology 137, no. 10 (2010): 1487–91. http://dx.doi.org/10.1017/s0031182010000235.

Der volle Inhalt der Quelle
Annotation:
SUMMARYInfection by a parasite often induces behavioural changes in the host and these changes may benefit either the host or the parasite. However, whether these changes are active host defence mechanisms or parasitic manipulations or simply incidental byproducts of the infection is not always clear. It has been suggested that understanding the proximate mechanisms of these changes as well as comparative studies could help distinguish these alternatives better. Behavioural fever is a common response to an infection in many animals and we investigated the phenomenon in the novel host-parasite
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Lafferty, Kevin D. "Biodiversity loss decreases parasite diversity: theory and patterns." Philosophical Transactions of the Royal Society B: Biological Sciences 367, no. 1604 (2012): 2814–27. http://dx.doi.org/10.1098/rstb.2012.0110.

Der volle Inhalt der Quelle
Annotation:
Past models have suggested host–parasite coextinction could lead to linear, or concave down relationships between free-living species richness and parasite richness. I explored several models for the relationship between parasite richness and biodiversity loss. Life cycle complexity, low generality of parasites and sensitivity of hosts reduced the robustness of parasite species to the loss of free-living species diversity. Food-web complexity and the ordering of extinctions altered these relationships in unpredictable ways. Each disassembly of a food web resulted in a unique relationship betwe
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

KLIMOV, PAVEL B., LUIZ G. A. PEDROSO, and QIXIN HE. "A probabilistic model predicting host specificity and host range expansion in mites parasitic on mammals." Zoosymposia 22 (November 30, 2022): 48. http://dx.doi.org/10.11646/zoosymposia.22.1.18.

Der volle Inhalt der Quelle
Annotation:
The emergence of new mammalian diseases through the switching of parasitic organisms to novel hosts has significant wildlife, livestock, and human health impacts, however, new host switches are notoriously difficult to predict. The factors influencing the host switches are not fully understood because complete unbiased large-scale datasets of host-parasite relationships are lacking. Building a large-scale model to identify these factors and predict potential host switching (host range expansion) could hold substantial benefits from theoretical and applied perspectives (e.g., disease emergence
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

CAMPIÃO, K. M., A. RIBAS, and L. E. R. TAVARES. "Diversity and patterns of interaction of an anuran–parasite network in a neotropical wetland." Parasitology 142, no. 14 (2015): 1751–57. http://dx.doi.org/10.1017/s0031182015001262.

Der volle Inhalt der Quelle
Annotation:
SUMMARYWe describe the diversity and structure of a host–parasite network of 11 anuran species and their helminth parasites in the Pantanal wetland, Brazil. Specifically, we investigate how the heterogeneous use of space by hosts changes parasite community diversity, and how the local pool of parasites exploits sympatric host species of different habits. We examined 229 anuran specimens, interacting with 32 helminth parasite taxa. Mixed effect models indicated the influence of anuran body size, but not habit, as a determinant of parasite species richness. Variation in parasite taxonomic divers
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Mbora, David N. M. "Book review: Primate Parasite Ecology: The Dynamics and Study of Host-Parasite Relationships." American Journal of Physical Anthropology 142, no. 3 (2010): 503–4. http://dx.doi.org/10.1002/ajpa.21278.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Gillespie, Thomas R. "Book review: Primate Parasite Ecology: The Dynamics and Study of Host-Parasite Relationships." American Journal of Human Biology 22, no. 3 (2010): 425–26. http://dx.doi.org/10.1002/ajhb.21035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Araújo, Adauto, and Luiz Fernando Ferreira. "Paleoparasitology and the antiquity of human host-parasite relationships." Memórias do Instituto Oswaldo Cruz 95, suppl 1 (2000): 89–93. http://dx.doi.org/10.1590/s0074-02762000000700016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

CORALLINI, CARLA, and MARIA CLARA BICCHIERAI. "Trichoptera larvae and gregarines: Host-parasite relationships." Zoosymposia 10, no. 1 (2016): 148–64. http://dx.doi.org/10.11646/zoosymposia.10.1.12.

Der volle Inhalt der Quelle
Annotation:
The presence of eugregarines (Apicomplexa, Conoidasida, Eugregarinorida) in the larval midgut of several Trichoptera families found in Italy has been well established. Literature and our data indicate that gregarine infestation is influenced by the trichopteran diet and, except for a few cases, there is not a species-specific relationship. In this paper an updated list of Italian Trichoptera species hosting gregarines as well as data on the biology, morphology and ultrastructure of the corresponding parasites are presented. The host-parasite interaction was also investigated showing the involv
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Garrido, C. T., A. L. Morassutti, J. R. S. Barradas, and C. Graeff-Teixeira. "Evaluating host–parasite co-adaptation relationships involving Angiostrongylus costaricensis." Journal of Helminthology 93, no. 1 (2017): 76–80. http://dx.doi.org/10.1017/s0022149x1700116x.

Der volle Inhalt der Quelle
Annotation:
AbstractAngiostrongylus costaricensis is a parasite that infects rodents, including the wild cotton rat Sigmodon hispidus and pygmy rice rats Oligoryzomys spp., among others. However, urban Rattus norvegicus and Mus musculus have not been identified as important hosts of A. costaricensis. In this study, Swiss mice (SW), Wistar R. norvegicus (RN), wild Oligoryzomys nigripes (ON) and a local strain of M. musculus (RGS) were experimentally infected with A. costaricensis. Survival, elimination of L1 (total sum per group, A0), and the number of adult worms recovered divided by the dose of each L3 i
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

He, Yi-Xun, Buz Salafsky, and Kalyanasundaram Ramaswamy. "Host–parasite relationships of Schistosoma japonicum in mammalian hosts." Trends in Parasitology 17, no. 7 (2001): 320–24. http://dx.doi.org/10.1016/s1471-4922(01)01904-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Cornell, Stephen J., Yves Desdevises, and Mark C. Rigby. "Evolutionary biology of host–parasite relationships: reality meets models." Trends in Ecology & Evolution 14, no. 11 (1999): 423–25. http://dx.doi.org/10.1016/s0169-5347(99)01727-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Lammie, Patrick J. "T cell clones: Tools to investigate host-parasite relationships." Veterinary Parasitology 29, no. 2-3 (1988): 159–70. http://dx.doi.org/10.1016/0304-4017(88)90123-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Zander, C. Dieter. "Ecology of Host Parasite Relationships in the Baltic Sea." Naturwissenschaften 85, no. 9 (1998): 426–36. http://dx.doi.org/10.1007/s001140050526.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Zinner, Dietmar, Filipa M. D. Paciência, and Christian Roos. "Host–Parasite Coevolution in Primates." Life 13, no. 3 (2023): 823. http://dx.doi.org/10.3390/life13030823.

Der volle Inhalt der Quelle
Annotation:
Organisms adapt to their environment through evolutionary processes. Environments consist of abiotic factors, but also of other organisms. In many cases, two or more species interact over generations and adapt in a reciprocal way to evolutionary changes in the respective other species. Such coevolutionary processes are found in mutualistic and antagonistic systems, such as predator–prey and host–parasite (including pathogens) relationships. Coevolution often results in an “arms race” between pathogens and hosts and can significantly affect the virulence of pathogens and thus the severity of in
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Graham, Andrea L., David M. Shuker, Laura C. Pollitt, Stuart K. J. R. Auld, Alastair J. Wilson, and Tom J. Little. "Fitness consequences of immune responses: Strengthening the empirical framework for ecoimmunology." Functional Ecology 25, no. 1 (2011): 5–17. https://doi.org/10.5281/zenodo.14816142.

Der volle Inhalt der Quelle
Annotation:
(Uploaded by Plazi for the Bat Literature Project) 1. Ecoimmunologists aim to understand the costs, benefits, and net fitness consequences of different strategies for immune defense. 2. Measuring the fitness consequences of immune responses is difficult, partly because of complex relationships between host fitness and the within-host density of parasites and immunological cells or molecules. In particular, neither the strongest immune responses nor the lowest parasite densities necessarily maximize host fitness. 3. Here, we propose that ecoimmunologists should routinely endeavour to measure th
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Tennakoon, Kushan U., Wang H. Chak, and Jay F. Bolin. "Nutritional and isotopic relationships of selected Bornean tropical mistletoe–host associations in Brunei Darussalam." Functional Plant Biology 38, no. 6 (2011): 505. http://dx.doi.org/10.1071/fp10211.

Der volle Inhalt der Quelle
Annotation:
Our understanding of mineral nutrition and carbon heterotrophy in mistletoes is derived largely from arid and temperate plant communities. Sharp differences between the tropical, temperate and arid communities, such as seasonality, water availability and mean temperature may influence basic assumptions regarding mistletoe physiology. Thus, we present mineral nutrition profiles and natural abundance carbon and nitrogen stable isotope data for tropical mistletoes and their hosts. Parasite–host mineral nutrition profiles were estimated for three Loranthaceous mistletoes: Scurrula ferruginea Danse
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!