Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Host-Pathogen-Environment interaction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Host-Pathogen-Environment interaction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Host-Pathogen-Environment interaction"
Martinez-Martin, Nadia. „Technologies for Proteome-Wide Discovery of Extracellular Host-Pathogen Interactions“. Journal of Immunology Research 2017 (2017): 1–18. http://dx.doi.org/10.1155/2017/2197615.
Der volle Inhalt der QuelleChen, Melissa Y., Leah M. Fulton, Ivie Huang, Aileen Liman, Sarzana S. Hossain, Corri D. Hamilton, Siyu Song, Quentin Geissmann, Kayla C. King und Cara H. Haney. „Order among chaos: High throughput MYCroplanters can distinguish interacting drivers of host infection in a highly stochastic system“. PLOS Pathogens 21, Nr. 2 (11.02.2025): e1012894. https://doi.org/10.1371/journal.ppat.1012894.
Der volle Inhalt der QuelleBurdon, J. J., und P. H. Thrall. „Resistance variation in natural plant populations“. Plant Protection Science 38, SI 1 - 6th Conf EFPP 2002 (01.01.2002): S145—S150. http://dx.doi.org/10.17221/10342-pps.
Der volle Inhalt der QuelleWroth, J. M. „Variation in pathogenicity among and within Mycosphaerella pinodes populations collected from field pea in Australia“. Canadian Journal of Botany 76, Nr. 11 (01.11.1998): 1955–66. http://dx.doi.org/10.1139/b98-164.
Der volle Inhalt der QuelleBlaustein, Andrew R., Stephanie S. Gervasi, Pieter T. J. Johnson, Jason T. Hoverman, Lisa K. Belden, Paul W. Bradley und Gisselle Y. Xie. „Ecophysiology meets conservation: understanding the role of disease in amphibian population declines“. Philosophical Transactions of the Royal Society B: Biological Sciences 367, Nr. 1596 (19.06.2012): 1688–707. http://dx.doi.org/10.1098/rstb.2012.0011.
Der volle Inhalt der QuelleHaley, Kathryn P., und Jennifer A. Gaddy. „Helicobacter pylori: Genomic Insight into the Host-Pathogen Interaction“. International Journal of Genomics 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/386905.
Der volle Inhalt der QuelleGaylord, Elizabeth A., Hau Lam Choy und Tamara L. Doering. „Dangerous Liaisons: Interactions of Cryptococcus neoformans with Host Phagocytes“. Pathogens 9, Nr. 11 (27.10.2020): 891. http://dx.doi.org/10.3390/pathogens9110891.
Der volle Inhalt der QuelleTung, Pham X., Eufemio T. Rasco, Peter Vander Zaag und Peter Schmiediche. „Resistance to Pseudomonas solanacearum in the potato: II. Aspects of host-pathogen-environment interaction“. Euphytica 45, Nr. 3 (Februar 1990): 211–15. http://dx.doi.org/10.1007/bf00032988.
Der volle Inhalt der QuelleTamir-Ariel, Dafna, Naama Navon und Saul Burdman. „Identification of Genes in Xanthomonas campestris pv. vesicatoria Induced during Its Interaction with Tomato“. Journal of Bacteriology 189, Nr. 17 (15.06.2007): 6359–71. http://dx.doi.org/10.1128/jb.00320-07.
Der volle Inhalt der QuelleMehta, Sahil, Amrita Chakraborty, Amit Roy, Indrakant K. Singh und Archana Singh. „Fight Hard or Die Trying: Current Status of Lipid Signaling during Plant–Pathogen Interaction“. Plants 10, Nr. 6 (30.05.2021): 1098. http://dx.doi.org/10.3390/plants10061098.
Der volle Inhalt der QuelleDissertationen zum Thema "Host-Pathogen-Environment interaction"
Duperret, Léo. „Caractérisation des mécanismes moléculaires de la permissivité au Syndrome de Mortalité de l'Huître du Pacifique (POMS) sous influence de la température et du régime alimentaire“. Electronic Thesis or Diss., Perpignan, 2024. http://www.theses.fr/2024PERP0042.
Der volle Inhalt der QuelleOver the past decades, food production systems have had to meet the growing demand for food driven by the exponential increase in the global human population. This demand has led to intensified agriculture, livestock farming, and fishing practices, often at the expense of natural resources and planetary health. In the marine environment, intensified fishing has resulted in the depletion of certain stocks and the implementation of fishing quotas. The decline in marine resources has prompted the development of aquaculture, a practice for farming blue resources. However, with overproduction and global environmental changes, we have witnessed an upsurge in epizootics since 1970, particularly among ectothermic organisms. The Pacific Oyster Mortality Syndrome (POMS) is a prime example, responsible for significant annual mortality episodes in juvenile oysters of the species Magallana gigas across major producing countries. Emerging in 2008 in France, this polymicrobial disease is influenced by several factors, including temperature (between 16°C and 24°C along the French coasts) and the availability of nutritional resources. Although extensive research has helped characterize its pathogenesis and identify the various factors influencing the development of the disease, the molecular mechanisms underlying variations in permissiveness according to these factors remain largely unknown. This thesis addresses this objective. Through a rigorous experimental design, a holistic approach, and an integrative comparative analysis at multiple scales under permissive and non-permissive conditions for the disease, we identified the molecular mechanisms underlying permissiveness related to temperature and nutritional resources. These findings enhance our understanding of the complexity of host-pathogen-environment interactions and will ultimately contribute to the development of predictive models for epidemiological risk
Schmertmann, Laura. „The Cryptococcus gattii species complex in koalas: host-pathogen-environment interactions and molecular epidemiology“. Thesis, The University of Sydney, 2019. http://hdl.handle.net/2123/20769.
Der volle Inhalt der QuelleHÖNIG, Václav. „Spatial Distribution of Tick-Borne Pathogens as a Consequence of Vector-Host-Pathogen Interactions with Environment“. Doctoral thesis, 2015. http://www.nusl.cz/ntk/nusl-201343.
Der volle Inhalt der QuelleBücher zum Thema "Host-Pathogen-Environment interaction"
Roche, Benjamin, Hélène Broutin und Frédéric Simard, Hrsg. Ecology and Evolution of Infectious Diseases. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789833.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Host-Pathogen-Environment interaction"
Prabhu, Ashish A., und V. Venkatadasu. „Systems and Synthetic Biology Approach to Understand the Importance of Host-Pathogen Interaction“. In Microbial Interventions in Agriculture and Environment, 433–46. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9084-6_19.
Der volle Inhalt der QuelleUlrich, Danielle E. M., Steve Voelker, J. Renée Brooks und Frederick C. Meinzer. „Insect and Pathogen Influences on Tree-Ring Stable Isotopes“. In Stable Isotopes in Tree Rings, 711–36. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92698-4_25.
Der volle Inhalt der QuellePrusky, Dov, Shiri Barad, Neta Luria und Dana Ment. „pH Modulation of Host Environment, a Mechanism Modulating Fungal Attack in Postharvest Pathogen Interactions“. In Post-harvest Pathology, 11–25. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07701-7_2.
Der volle Inhalt der QuelleAly, Sharif S., und Sarah M. Depenbrock. „Preventing bacterial diseases in dairy cattle“. In Improving dairy herd health Improving, 395–456. Burleigh Dodds Science Publishing, 2021. http://dx.doi.org/10.19103/as.2020.0086.16.
Der volle Inhalt der QuelleBateman, Kelly S., Stephen W. Feist, John P. Bignell, David Bass und Grant D. Stentiford. „Marine pathogen diversity and disease outcomes“. In Marine Disease Ecology, 3–44. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198821632.003.0001.
Der volle Inhalt der QuelleMarquis, Jean-Francois, John R. Forbes, Francois Canonne-Hergaux, Cynthia Horth und Philippe Gros. „Metal Transport Genes“. In Genetic Susceptibility to Infectious Diseases, 175–89. Oxford University PressNew York, NY, 2008. http://dx.doi.org/10.1093/oso/9780195174908.003.0013.
Der volle Inhalt der QuelleSingh, Joginder, Joydeep Dutta und Ravi Kant Pathak. „Antibacterial Peptides: Potential Therapeutic Agent“. In Recent Trends and The Future of Antimicrobial Agents - Part I, 61–92. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815079609123010006.
Der volle Inhalt der QuelleAfifi, Mohammed A., Mohammed W. Al-Rabia und Deema I. Fallatah. „Animal Modeling of Infectious Diseases“. In Animal Models In Experimental Medicine, 20–54. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815196382124010005.
Der volle Inhalt der QuelleOwen, Jennifer C., James S. Adelman und Amberleigh E. Henschen. „The Nature of Host–Pathogen Interactions“. In Infectious Disease Ecology of Wild Birds, 7–28. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198746249.003.0002.
Der volle Inhalt der QuelleF. Ramos, Rodrigo, Lisiane Sobucki, Estéfany Pawlowski, Janaina S. Sarzi, Jessica E. Rabuske, Lucas G. Savian, Tiago E. Kaspary und Cristiano Bellé. „Perspective Chapter: Microorganisms and Their Relationship with Tree Health“. In Current and Emerging Challenges in the Diseases of Trees [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.110461.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Host-Pathogen-Environment interaction"
Horwitz, Benjamin A., und Barbara Gillian Turgeon. Fungal Iron Acquisition, Oxidative Stress and Virulence in the Cochliobolus-maize Interaction. United States Department of Agriculture, März 2012. http://dx.doi.org/10.32747/2012.7709885.bard.
Der volle Inhalt der QuelleEldar, Avigdor, und Donald L. Evans. Streptococcus iniae Infections in Trout and Tilapia: Host-Pathogen Interactions, the Immune Response Toward the Pathogen and Vaccine Formulation. United States Department of Agriculture, Dezember 2000. http://dx.doi.org/10.32747/2000.7575286.bard.
Der volle Inhalt der QuelleSionov, Edward, Nancy Keller und Shiri Barad-Kotler. Mechanisms governing the global regulation of mycotoxin production and pathogenicity by Penicillium expansum in postharvest fruits. United States Department of Agriculture, Januar 2017. http://dx.doi.org/10.32747/2017.7604292.bard.
Der volle Inhalt der QuelleShpigel, Nahum Y., Ynte Schukken und Ilan Rosenshine. Identification of genes involved in virulence of Escherichia coli mastitis by signature tagged mutagenesis. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7699853.bard.
Der volle Inhalt der QuelleDickman, Martin B., und Oded Yarden. Modulation of the Redox Climate and Phosphatase Signaling in a Necrotroph: an Axis for Inter- and Intra-cellular Communication that Regulates Development and Pathogenicity. United States Department of Agriculture, August 2011. http://dx.doi.org/10.32747/2011.7697112.bard.
Der volle Inhalt der QuelleHarms, Nathan, Judy Shearer, James Cronin und John Gaskin. Geographic and genetic variation in susceptibility of Butomus umbellatus to foliar fungal pathogens. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41662.
Der volle Inhalt der QuellePrusky, Dov, und Jeffrey Rollins. Modulation of pathogenicity of postharvest pathogens by environmental pH. United States Department of Agriculture, Dezember 2006. http://dx.doi.org/10.32747/2006.7587237.bard.
Der volle Inhalt der Quelle