Zeitschriftenartikel zum Thema „HTF TUBE WITH FINS“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "HTF TUBE WITH FINS" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Senthil, Ramalingam, Aditya Patel, Rohan Rao und Sahil Ganeriwal. „Melting Behavior of Phase Change Material in a Solar Vertical Thermal Energy Storage with Variable Length Fins added on the Heat Transfer Tube Surfaces“. International Journal of Renewable Energy Development 9, Nr. 3 (25.06.2020): 361–67. http://dx.doi.org/10.14710/ijred.2020.29879.
Der volle Inhalt der QuelleSenthil, Ramalingam. „Effect of uniform and variable fin height on charging and discharging of phase change material in a horizontal cylindrical thermal storage“. Thermal Science 23, Nr. 3 Part B (2019): 1981–88. http://dx.doi.org/10.2298/tsci170709239s.
Der volle Inhalt der QuelleTorbarina, Fran, Kristian Lenic und Anica Trp. „Computational Model of Shell and Finned Tube Latent Thermal Energy Storage Developed as a New TRNSYS Type“. Energies 15, Nr. 7 (25.03.2022): 2434. http://dx.doi.org/10.3390/en15072434.
Der volle Inhalt der QuelleAkarsh, A., und Sumer Dirbude. „Effect of HTF flow direction, mass flow rate and fins on melting and solidification in a latent-heat-based thermal energy storage device“. Journal of Physics: Conference Series 2054, Nr. 1 (01.10.2021): 012049. http://dx.doi.org/10.1088/1742-6596/2054/1/012049.
Der volle Inhalt der QuelleYu, Meng, Xiaowei Sun, Wenjuan Su, Defeng Li, Jun Shen, Xuejun Zhang und Long Jiang. „Investigation on the Melting Performance of a Phase Change Material Based on a Shell-and-Tube Thermal Energy Storage Unit with a Rectangular Fin Configuration“. Energies 15, Nr. 21 (03.11.2022): 8200. http://dx.doi.org/10.3390/en15218200.
Der volle Inhalt der QuelleSun, Xinguo, Hayder I. Mohammed, Mohammadreza Ebrahimnataj Tiji, Jasim M. Mahdi, Hasan Sh Majdi, Zixiong Wang, Pouyan Talebizadehsardari und Wahiba Yaïci. „Investigation of Heat Transfer Enhancement in a Triple Tube Latent Heat Storage System Using Circular Fins with Inline and Staggered Arrangements“. Nanomaterials 11, Nr. 10 (09.10.2021): 2647. http://dx.doi.org/10.3390/nano11102647.
Der volle Inhalt der QuelleCieśliński, Janusz T., und Maciej Fabrykiewicz. „Thermal Energy Storage with PCMs in Shell-and-Tube Units: A Review“. Energies 16, Nr. 2 (13.01.2023): 936. http://dx.doi.org/10.3390/en16020936.
Der volle Inhalt der QuellePagkalos, Christos, Michalis Gr Vrachopoulos, John Konstantaras und Kostas Lymperis. „Comparing water and paraffin PCM as storage mediums for thermal energy storage applications“. E3S Web of Conferences 116 (2019): 00057. http://dx.doi.org/10.1051/e3sconf/201911600057.
Der volle Inhalt der QuelleSunden, Bengt Ake, Zan Wu und Dan Huang. „Comparison of heat transfer characteristics of aviation kerosene flowing in smooth and enhanced mini tubes at supercritical pressures“. International Journal of Numerical Methods for Heat & Fluid Flow 26, Nr. 3/4 (03.05.2016): 1289–308. http://dx.doi.org/10.1108/hff-12-2015-0538.
Der volle Inhalt der QuelleDhaou, Mohamed Houcine, Sofiene Mellouli, Faisal Alresheedi und Yassine El-Ghoul. „Numerical Assessment of an Innovative Design of an Evacuated Tube Solar Collector Incorporated with PCM Embedded Metal Foam/Plate Fins“. Sustainability 13, Nr. 19 (24.09.2021): 10632. http://dx.doi.org/10.3390/su131910632.
Der volle Inhalt der QuelleNajim, Farqad T., Abdullah Bahlekeh, Hayder I. Mohammed, Anmar Dulaimi, Azher M. Abed, Raed Khalid Ibrahem, Fadhil Abbas Al-Qrimli, Mustafa Z. Mahmoud, Jan Awrejcewicz und Witold Pawłowski. „Evaluation of Melting Mechanism and Natural Convection Effect in a Triplex Tube Heat Storage System with a Novel Fin Arrangement“. Sustainability 14, Nr. 17 (02.09.2022): 10982. http://dx.doi.org/10.3390/su141710982.
Der volle Inhalt der QuelleZaib, Aurang, Abdur Rehman Mazhar, Shahid Aziz, Tariq Talha und Dong-Won Jung. „Heat Transfer Augmentation Using Duplex and Triplex Tube Phase Change Material (PCM) Heat Exchanger Configurations“. Energies 16, Nr. 10 (11.05.2023): 4037. http://dx.doi.org/10.3390/en16104037.
Der volle Inhalt der QuelleKoukou, Maria K., Michail Gr Vrachopoulos, George Dogkas, Christos Pagkalos, Kostas Lymperis, Luis Coelho und Amandio Rebola. „Testing the performance of a prototype thermal energy storage tank working with organic phase change material for space heating application conditions“. E3S Web of Conferences 116 (2019): 00038. http://dx.doi.org/10.1051/e3sconf/201911600038.
Der volle Inhalt der QuelleMohapatra, Kailash, und Dipti Prasad Mishra. „Effect of fin and tube configuration on heat transfer of an internally finned tube“. International Journal of Numerical Methods for Heat & Fluid Flow 25, Nr. 8 (02.11.2015): 1978–99. http://dx.doi.org/10.1108/hff-05-2014-0129.
Der volle Inhalt der QuelleHashizume, Kenichi, Takahiro Matsue und Yoshiaki Sueoka. „Effect of fins on forced convection heat transfer around a tube“. Heat Transfer?Asian Research 32, Nr. 5 (12.06.2003): 445–54. http://dx.doi.org/10.1002/htj.10098.
Der volle Inhalt der QuelleJalil, Ehsan, und Koorosh Goudarzi. „Heat transfer enhancement of finned‐tube heat exchanger using nozzle‐ and diffuser‐shaped fins instead of straight fins“. Heat Transfer 51, Nr. 2 (13.10.2021): 1336–57. http://dx.doi.org/10.1002/htj.22354.
Der volle Inhalt der QuelleHashizume, Kenichi, und Yoshiaki Sueoka. „Effect of fins on forced convection heat transfer around a tube in an aligned-arranged tube bundle“. Heat Transfer—Asian Research 34, Nr. 8 (Dezember 2005): 555–63. http://dx.doi.org/10.1002/htj.20091.
Der volle Inhalt der QuelleAbbood, Sahar A., und Bengt Ake Sunden. „Numerical study of turbulent forced convection in a finned tube with and without CuO nano fluid“. International Journal of Numerical Methods for Heat & Fluid Flow 26, Nr. 7 (05.09.2016): 2252–70. http://dx.doi.org/10.1108/hff-04-2015-0146.
Der volle Inhalt der QuelleWu, Feng, Mei Lin, Lin Tian, Qiuwang Wang und Laiqin Luo. „Convective heat transfer and pressure drop of a tube with internal longitudinal fins“. Heat Transfer—Asian Research 36, Nr. 2 (2007): 57–65. http://dx.doi.org/10.1002/htj.20147.
Der volle Inhalt der QuelleShivanian, Elyas, und Antonio Campo. „Exact, analytical heat transfer from longitudinal radiating fins of rectangular profile in a tube/fin ensemble“. Heat Transfer 50, Nr. 5 (26.02.2021): 4843–54. http://dx.doi.org/10.1002/htj.22105.
Der volle Inhalt der QuelleKawaguchi, Kiyoshi, Kenichi Okui und Takaharu Kashi. „The heat transfer and pressure drop characteristics of finned tube banks in forced convection (comparison of the pressure drop characteristics of spiral fins and serrated fins)“. Heat Transfer?Asian Research 33, Nr. 7 (2004): 431–44. http://dx.doi.org/10.1002/htj.20030.
Der volle Inhalt der QuelleMahdavi, Mostafa, und Mahmood Yaghoubi. „Experimental study of natural frost formation over a horizontal tube with annular compact fins under natural convection“. Heat Transfer-Asian Research 41, Nr. 1 (02.12.2011): 84–98. http://dx.doi.org/10.1002/htj.20397.
Der volle Inhalt der QuellePayambarpour, Seyed Abdolkarim, Mohammad Alhuyi Nazari, Mohammad Hossein Ahmadi und Ali J. Chamkha. „Effect of partially wet-surface condition on the performance of fin-tube heat exchanger“. International Journal of Numerical Methods for Heat & Fluid Flow 29, Nr. 10 (07.10.2019): 3938–58. http://dx.doi.org/10.1108/hff-07-2018-0362.
Der volle Inhalt der QuellePatel, Jay R., und Manish K. Rathod. „Thermal performance enhancement of melting and solidification process of phase-change material in triplex tube heat exchanger using longitudinal fins“. Heat Transfer-Asian Research 48, Nr. 2 (03.12.2018): 483–501. http://dx.doi.org/10.1002/htj.21372.
Der volle Inhalt der QuelleHosseini, Mohammad M., und Asghar B. Rahimi. „Heat transfer enhancement in solidification process by change of fins arrangements in a heat exchanger containing phase-change materials“. International Journal of Numerical Methods for Heat & Fluid Flow 29, Nr. 5 (07.05.2019): 1741–55. http://dx.doi.org/10.1108/hff-06-2018-0333.
Der volle Inhalt der QuelleShank, Kyle, Jessica Bernat, Ethan Regal, Joel Leise, Xiaoxu Ji und Saeed Tiari. „Experimental Study of Varying Heat Transfer Fluid Parameters within a Latent Heat Thermal Energy Storage System Enhanced by Fins“. Sustainability 14, Nr. 14 (21.07.2022): 8920. http://dx.doi.org/10.3390/su14148920.
Der volle Inhalt der QuelleMotevali, Ali, Mohammadreza Hasandust Rostami, Gholamhassan Najafi und Wei-Mon Yan. „Evaluation and Improvement of PCM Melting in Double Tube Heat Exchangers Using Different Combinations of Nanoparticles and PCM (The Case of Renewable Energy Systems)“. Sustainability 13, Nr. 19 (26.09.2021): 10675. http://dx.doi.org/10.3390/su131910675.
Der volle Inhalt der QuelleJu, Yongfeng, Roohollah Babaei-Mahani, Raed Khalid Ibrahem, Shoira Khakberdieva, Yasir Salam Karim, Ahmed N. Abdalla, Abdullah Mohamed, Mustafa Z. Mahmoud und Hafiz Muhammad Ali. „Discharge Enhancement in a Triple-Pipe Heat Exchanger Filled with Phase Change Material“. Nanomaterials 12, Nr. 9 (09.05.2022): 1605. http://dx.doi.org/10.3390/nano12091605.
Der volle Inhalt der QuelleHavaldar, Sanjay N., Harsh V. Malapur, Kaustubh G. Kulkarni und Gary A. Anderson. „Numerical Investigation of Concentrated Solar Central Billboard with Hexagonal Tubes.“ IOP Conference Series: Earth and Environmental Science 1084, Nr. 1 (01.10.2022): 012021. http://dx.doi.org/10.1088/1755-1315/1084/1/012021.
Der volle Inhalt der QuelleLi, Min, Jasim M. Mahdi, Hayder I. Mohammed, Dmitry Olegovich Bokov, Mustafa Z. Mahmoud, Ali Naghizadeh, Pouyan Talebizadehsardari und Wahiba Yaïci. „Solidification Enhancement in a Multi-Tube Latent Heat Storage System for Efficient and Economical Production: Effect of Number, Position and Temperature of the Tubes“. Nanomaterials 11, Nr. 12 (26.11.2021): 3211. http://dx.doi.org/10.3390/nano11123211.
Der volle Inhalt der QuelleBouali, Belkacem, und Hanane-Maria Regue. „Contribution to the Parametric Study of the Performance of A Parabolic Trough Collector“. E3S Web of Conferences 321 (2021): 02016. http://dx.doi.org/10.1051/e3sconf/202132102016.
Der volle Inhalt der QuelleKis Agustin, Helena Carolina, Ika Dewi Wijayanti und Rakhmat Satrio Wibowo. „Morphology of Crown Tube Austenitic Stainless Steel TP316 HTF Failure“. Applied Mechanics and Materials 836 (Juni 2016): 67–71. http://dx.doi.org/10.4028/www.scientific.net/amm.836.67.
Der volle Inhalt der QuelleFadl, Mohamed, und Philip Eames. „Thermal Performance Analysis of the Charging/Discharging Process of a Shell and Horizontally Oriented Multi-Tube Latent Heat Storage System“. Energies 13, Nr. 23 (25.11.2020): 6193. http://dx.doi.org/10.3390/en13236193.
Der volle Inhalt der QuelleStanciu, Dorin, Camelia Stanciu, Valentin Apostol und Horatiu Pop. „Numerical simulation of a phase change material melting process“. E3S Web of Conferences 112 (2019): 01010. http://dx.doi.org/10.1051/e3sconf/201911201010.
Der volle Inhalt der QuellePakalka, Saulius, Kęstutis Valančius und Matas Damonskis. „ŠILUMNEŠIO DEBITO ĮTAKOS FAZINIO VIRSMO MEDŽIAGOS VEIKIMUI TYRIMAS / INVESTIGATION OF THE INFLUENCE OF MASS FLOW RATE ON PHASE CHANGE MATERIAL BEHAVIOUR“. Mokslas - Lietuvos ateitis 11 (10.10.2019): 1–5. http://dx.doi.org/10.3846/mla.2019.10578.
Der volle Inhalt der QuelleNagappan, Beemkumar, Karthikeyan Alagu, Yuvarajan Devarajan und Dinesh Babu Munuswamy. „Energy and Exergy Analysis of Multi-Temperature PCMs Employed in a Latent Heat Storage System and Parabolic Trough Collector“. Journal of Non-Equilibrium Thermodynamics 43, Nr. 3 (26.07.2018): 211–20. http://dx.doi.org/10.1515/jnet-2017-0066.
Der volle Inhalt der QuelleAnggara, Fajar, Henry Carles und Pathur Razi Ansyah. „STUDI NUMERIK: PENGARUH DEBIT INLET TERHADAP KARAKTERISTIK PELELEHAN PARAFFIN WAX PADA TABUNG SILINDER“. Scientific Journal of Mechanical Engineering Kinematika 4, Nr. 1 (13.06.2019): 15–26. http://dx.doi.org/10.20527/sjmekinematika.v4i1.48.
Der volle Inhalt der QuellePitambar Subhash Gadhave, Chandrakant Laxman Prabhune, Hanumant Pandurang Jagtap und Parmeshwar Pandurang Ritapure. „Investigative Study of Solidification and Melting of Stearic Acid in Triplex Pipe with Perforated Fin Surface“. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 98, Nr. 1 (19.09.2022): 125–36. http://dx.doi.org/10.37934/arfmts.98.1.125136.
Der volle Inhalt der QuelleShehab, Saad Najeeb. „Natural-Convection Phenomenon from a Finned Heated Vertical Tube: Experimental Analysis“. Al-Khwarizmi Engineering Journal 13, Nr. 4 (20.03.2019): 30–40. http://dx.doi.org/10.22153/kej.2017.05.004.
Der volle Inhalt der QuelleRamachandran, S. „Experimental Analysis of Storage of Solar Energy in Phase Change Materials Encapsulated in Copper Cylinders“. Applied Mechanics and Materials 766-767 (Juni 2015): 445–50. http://dx.doi.org/10.4028/www.scientific.net/amm.766-767.445.
Der volle Inhalt der QuelleMao, Qianjun, Ning Liu und Li Peng. „Numerical Investigations on Charging/Discharging Performance of a Novel Truncated Cone Thermal Energy Storage Tank on a Concentrated Solar Power System“. International Journal of Photoenergy 2019 (27.01.2019): 1–17. http://dx.doi.org/10.1155/2019/1609234.
Der volle Inhalt der QuelleKumar, Kamuju Naveen, Akanksha Maurya und Deepak Sharma. „Performance Investigation of Cylindrical Cavity Receiver Using Roughened Surfaces“. IOP Conference Series: Materials Science and Engineering 1259, Nr. 1 (01.10.2022): 012028. http://dx.doi.org/10.1088/1757-899x/1259/1/012028.
Der volle Inhalt der QuelleGuo, Zhanjun, Wu Zhou, Sen Liu, Zhangyang Kang und Rufei Tan. „Effects of Geometric Parameters and Heat-Transfer Fluid Injection Direction on Enhanced Phase-Change Energy Storage in Vertical Shell-and-Tube System“. Sustainability 15, Nr. 17 (30.08.2023): 13062. http://dx.doi.org/10.3390/su151713062.
Der volle Inhalt der QuelleGnanavel, C., R. Saravanan und M. Chandrasekaran. „Numerical Exploration of Influence of Phase Changing Material in Heat Transfer Augmentation in the Double Tube Heat Exchanger“. International Journal of Engineering & Technology 7, Nr. 3.27 (15.08.2018): 162. http://dx.doi.org/10.14419/ijet.v7i3.27.17751.
Der volle Inhalt der QuelleBošnjaković, Mladen, und Simon Muhič. „Numerical Analysis of Tube Heat Exchanger with Perforated Star-Shaped Fins“. Fluids 5, Nr. 4 (13.12.2020): 242. http://dx.doi.org/10.3390/fluids5040242.
Der volle Inhalt der QuelleLong, Jian You. „Simulation Investigation for Heat Transfer in Fin-Tube Thermal Storage Unit with Phase Change Material“. Advanced Materials Research 168-170 (Dezember 2010): 895–99. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.895.
Der volle Inhalt der QuelleHussien, Kamil Abdul. „Experimental Investigation of Heat Transfer Enhancement by Using Different Number of Fins in Circular Tube“. Wasit Journal of Engineering Sciences 6, Nr. 3 (10.12.2018): 1–12. http://dx.doi.org/10.31185/ejuow.vol6.iss3.99.
Der volle Inhalt der QuelleGuerraiche, D., K. Guerraiche, Z. Driss, A. Chibani, S. Merouani und C. Bougriou. „Heat Transfer Enhancement in a Receiver Tube of Solar Collector Using Various Materials and Nanofluids“. Engineering, Technology & Applied Science Research 12, Nr. 5 (02.10.2022): 9282–94. http://dx.doi.org/10.48084/etasr.5214.
Der volle Inhalt der QuelleSun, Xinguo, Jasim M. Mahdi, Hayder I. Mohammed, Hasan Sh Majdi, Wang Zixiong und Pouyan Talebizadehsardari. „Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins“. Energies 14, Nr. 21 (01.11.2021): 7179. http://dx.doi.org/10.3390/en14217179.
Der volle Inhalt der QuelleBošnjaković, Mladen, und Simon Muhič. „Numerical Analysis of Tube Heat Exchanger with Trimmed Star-Shaped Fins“. Applied Sciences 12, Nr. 10 (11.05.2022): 4857. http://dx.doi.org/10.3390/app12104857.
Der volle Inhalt der Quelle